

EurotestXC MI 3152 EurotestXC 2,5 kV MI 3152H Bedienungsanleitung

Version 1.2.3, Code no. 20 752 490 Source document: Version 1.2.4, Code no. 20 752 411

Händler

Hersteller

METREL d.d. Ljubljanska cesta 77 SI1354 Horjul Slovenia web Seite: <u>http://www.metrel.de</u> e-mail: <u>metrel@metrel.si</u>

CE Das CE-Kennzeichen auf Ihrem Gerät bestätigt, dass dieses Gerät die Anforderungen der EU (European Union) hinsichtlich Sicherheit und elektromagnetische Verträglichkeit erfüllt.

© 2015 Metrel

Die Handelsnamen Metrel, Smartec, Eurotest und Autosequence sind in Europa und anderen Ländern eingetragene oder angemeldete Warenzeichen.

Diese Veröffentlichung darf ohne schriftliche Genehmigung durch METREL weder vollständig noch teilweise vervielfältigt oder in sonstiger Weise verwendet werden.

INHALTSVERZEICHNIS

1	Allgemeine Beschreibung	. 7
	1.1 Warnungen und Hinweise	. 7
	1.1.1 Sicherheitshinweise	. 7
	1.1.2 Warnhinweise am Gerät	. 8
	1.1.3 Warnhinweise bezüglich der Sicherheit der Akkus	. 8
	1.1.4 Sicherheitsrelevante Warnhinweise zu den Messfunktionen	. 8
	1.1.5 Hinweise zu den Messtunktionen	. 9
	1.2 Prutung Potential auf dem PE-Anschluss	12
	1.5 Dallelle ullu Auliauell	14
~	Necessarite estrand Zubekär	10
2	Messgeratesatz und Zubenor	10
	2.1 Standard-Lieferumfang MI 3152 EurotestXC	16
	2.2 Standard-Lieferumfang MI 3152H EurotestXC 2,5kV	16
	2.2.1 Optionales Zubehör	16
3	Gerätebeschreibung	17
	3.1 Vorderseite	17
	3.2 Anschlussfeld	18
	3.3 Rückseite	19
	3.4 Tragen des Messgeräts	21
	3.4.1 Sicheres Anbringen des Riemens	21
4	Bedienung des Messgeräts	23
	4.1 Allgemeine Bedeutung der Tasten	23
	4.2 Allgemeine Bedeutung der Touch-Gesten	24
	4.3 Virtuelle Tastatur	25
	4.4 Anzeige und akustische Signale	26
	4.4.1 Spannungsmonitor	26
	4.4.2 Batterieanzeige	27
	4.4.5 Mess Aklionen und Meldungen	27
	4.5 Messgeräte Hauntmenü	29
	4.6 Allgemeine Finstellungen	31
	4.6.1 Sprache	31
	4.6.2 Énergiesparmodus	32
	4.6.3 Datum und Uhrzeit	33
	4.6.4 Einstellungen	33
	4.6.5 Grundeinstellungen	35
	4.6.6 Messgeräte Information	36
	4.7 Geräte Profile	37
	4.8 Menu Workspace Manager	38
	4.8.1 Workspaces und Expons	30 20
	4.0.2 I laupullellu Wolkspace Wallayel	30
	4.8.4 Arbeiten mit Exports	<u>⊿</u> ∩
	485 Finen neuen Workspace hinzufügen	41
	4.8.6 Einen Workspace öffnen	42
	4.8.7 Einen Workspace / Export löschen	42
	4.8.8 Einen Workspace importieren	43

	4.8.9	9 Einen Workspace exportieren	44
5		Memory Organizer	45
	5.1	Menü Memory Organizer	45
	5.1.1	1 Messung und Bewertungen	45
	5.1.2	2 Strukturobjekte	46
	5.1.3	3 Arbeiten mit dem Baum Menü	47
6		Einzelprüfungen	66
	6.1	Auswahl- Modus	66
	6.1.1	1 Einzelprüfung Bildschirmanzeigen	67
	6.1.2	2 Einzelprüfungen Einstellung der Parameter und Grenzwerte	69
	6.1.3	3 Einzelprüfungen Startbildschirm	70
	6.1.4	Einzelprüfung Bildschirm während der Prüfung	71
	6.1.5	Einzelprüfung Ergebnis-Bildschirm	72
	6.1.6	6 Bearbeiten von Diagrammen (Oberwellen)	74
	6.1.1		75
	6.1.8	Abgerutene Einzelprutung Ergebnis-Bilaschirm	76
7		Prüfungen und Messungen	77
	7.1	Spannung, Frequenz und Phasenfolge	77
	7.2	R iso – Isolationswiderstand	80
	7.3	DAR und PI Diagnose (nur MI 3152H)	82
	7.4	Widerstand der Erdverbindung und der Potentialausgleichsverbindungen	85
	1.5	Durchgang – Kontinulerliche Widerstandsmessung mit niedrigem Strom	87
	7.5.	Prüfen von BCDe	00
	7.0	r Tulell volt RCDS	90 Q1
	7.6.2	2 RCD t – Auslösezeit	92
	7.6.2	3 RCD I – Auslösestrom	93
	7.7	RCD Auto – RCD Auto Test	94
	7.8	Z loop – Fehlerschleifenimpedanz und unbeeinflusster Fehlerstrom	96
	7.9	Zs rcd –Fehlerschleifenimpedanz und unbeeinflusster Fehlerstrom im System mit	98
	7 10	7 loop mQ – Hochpräzise Fehlerschleifenimpedanz und unbeeinflusster	00
		Kurzschlussstrom	100
	7.11	Zline – Leitungsimpedanz und unbeeinflusster Kurzschlussstrom	103
	7.12	Z loop m Ω – Hochpräzise Leitungsimpedanz und unbeeinflusster Kurzschlussstrom	1
			105
	7.13	Spannungsfallmessung	108
	7.14	Erde – Erdungswiderstand (3-Leitungs Prüfung)	111
	7.15	Erde 2 Stromzangen - Kontaktlose Erdungswiderstandsmessung (mit zwei	
		Stromzangen)	113
	7.16	Ro - Spezifischer Erdwiderstand	115
	7.17	Leistung	117
	7.18	Oberweilen	119
	1.19	SUUIIS	IZI 122
	1.2U 7.01	IOFL = EISIEI FEIIIEIADIEIISII OIII (IIUI IVII 3132)	125 125
	1.21 7.22	Re - Schutzleiterwiderstand	ເ∠ວ 120
	7 23	Beleuchtungsstärke	131
8		Auto Test	133
5	0.4		
	8.1	AUTO TN (DOD) Auto Test Sequenzen für TN Erdurgssysteme	134
	õ.Z	AUTO TN (KUD) – Auto Test Sequenz fur TN Eraungssystem mit KUD	135

8.3 8.4	AUTO TN – Auto Test Sequenzen für TN Erdungssystem ohne RCD AUTO IT – Auto Test Sequenz für IT Erdungssystem (nur MI 3152)	137 139
9	Kommunikation	142
9.1 9.2	USB und RS232 Kommunikation Bluetooth Kommunikation	142 143
10	Aktualisieren des Messgeräts	144
11	Wartung	145
11.1 11.2 11.3	Austausch der Sicherung Reinigung Periodische Kalibrierung	145 146 146
11.4	Kundendienst	146
12	Technische Daten	147
12.1	R iso – Isolationswiderstand	147
12.2	Diagnose Prüfung (nur MI 3152H)	149
12.3	Widerstand der Erdverbindung und der Potentialausgleichsverbindungen	150
12.4	Durchgang – Kontinuierliche Widerstandsmessung mit niedrigem Strom	150
12.5	RCD Prüfung	151
12.	5.1 RCD Uc – Berührungsspannung	151
12.	5.2 RCD I – AUSIOSEZEII	152
12.5	7 loon – Fehlerschleifenimnedanz und unbeeinflusster Fehlerstrom	152
12.0	Zs rcd –Fehlerschleifenimpedanz und unbeeinflusster Fehlerstrom im System mit	153
12.8	Zline – Leitungsimpedanz und unbeeinflusster Kurzschlussstrom	154
12.9	Spannungsfallmessung	154
12.10	Rpe – Schutzleiterwiderstand	155
12.11	Erde – Erdungswiderstand (3-Leiter Prüfung)	156
12.12	Erde 2 Stromzangen - Kontaktlose Erdungswiderstandsmessung (mit zwei	450
10 10	Stromzangen)	150
12.13	R0 - Spezilischer Erowiderstand	157
12.14	14.1 Phasenfolde	158
12.	14.2 Spannung	158
12.	14.3 Frequenz	158
12.	14.4 Spannungsmonitor	158
12.15	Ströme	159
12.16	Leistung	160
12.17		160
12.18	ISFL – Erster Fenierableitstrom (nur MI 3152)	101
12.19	NMD (NUL WI 5152) Beleuchtungsstärke	162
12.20	Allgemeine Daten	163
Anhong	$\Lambda = \text{Sicherungstabelle} = \text{IPSC}$	164
Amhang	Anmerkungen zum Drefil	400
Annang	B – Anmerkungen zum Prom	100
B.1	Protil Austria (ALAJ)	168
B.2	Profil Lingara (Profil Code ALAC)	169
В.З Д Л	Profil Schweiz (Profil Code ΔLΔL)	175
B.5	Profil UK (Profil Code ALAB)	175
B.6	Profil AUS/NZ (Profil Code ALAE)	175

Anhang (C – Commander (A 1314, A 1401)	176
C.1	▲ Sicherheitsrelevante Warnhinweise:	176
C.2	Batterie	176
C.3	Beschreibung der Commander-Geräte	176
C.4	Betrieb der Commander-Geräte	177
Anhang I	O – Strukturobjekte	179

1 Allgemeine Beschreibung

1.1 Warnungen und Hinweise

1.1.1 Sicherheitshinweise

Um ein hohes Maß an der Bediensicherheit bei der Durchführung verschiedener Messungen mit dem EurotestXC Messgerät zu erreichen und auch die Schäden an der Prüfausrüstung zu vermeiden, müssen die folgenden allgemeinen Warnhinweise beachtet werden:

- Lesen Sie dieses Benutzerhandbuch sorgfältig durch, sonst kann der Gebrauch des Messgeräts sowohl für den Bediener als auch für das Messgerät und den Prüfling gefährlich sein!
- Beachten Sie die Warnaufkleber auf dem Prüfgerät (für weitere Information siehe nächstes Kapitel).
- Wenn das Prüfgerät nicht in der Art und Weise benutzt wird, wie in dieser Bedienungsanleitung vorgeschrieben wird, kann der durch das Prüfgerät bereitgestellte Schutz beeinträchtigt werden!
- Benutzen Sie das Messgerät oder das Zubehör nicht, wenn Sie eine Beschädigung bemerkt haben!
- Beachten Sie alle allgemein bekannten Vorsichtsmaßnahmen, um das Risiko eines Stromschlags beim Umgang mit gefährlichen Spannungen zu vermeiden!
- Verwenden Sie nur standardmäßiges oder optionales Zubehör, das von Ihrem Händler geliefert wird!
- → □Falls eine Sicherung ausgefallen ist befolgen Sie die Anweisungen in dieser Anleitung, um sie zu ersetzen! Verwenden Sie nur Sicherungen, die angegeben sind!
- Die Wartung und Kalibrierung des Geräts darf nur von kompetenten und befugten Personen durchgeführt werden.
- Das Messgerät nicht in AC Versorgungssystemen mit Spannungen über 550 VAC.
- Beachten Sie, dass die Schutzart einiger Zubehörteile niedriger ist als die des Messgerätes. Prüfspitzen und Commander-Prüfspitze haben abnehmbare Kappen. Wenn sie entfernt werden, fällt der Schutz auf CAT II zurück. Überprüfen Sie die Kennzeichnung auf Zubehör!
 - Kappe ab, 18 mm Spitze: CAT II up to 1000 V
 - Kappe auf, 4 mm Spitze: CAT II 1000 V / CAT III 600 V / CAT IV300 V
- Das Gerät wird mit wieder aufladbaren Ni-MH Akkus geliefert. Die Akku-Zellen dürfen nur durch denselben Typ ersetzt werden, so wie es auf dem Schild des Batteriefachs angegeben oder in dieser Bedienungsanleitung beschrieben ist. Verwenden Sie keine Alkali-Standardbatterien, während das Netzteil angeschlossen ist, da sonst Explosionsgefahr besteht!
- Gefährliche Spannungen im Inneren des Messgerätes. Trennen Sie alle Messleitungen, entfernen Sie das Netzkabel und schalten Sie das Gerät aus, bevor Sie den Batteriefachdeckel entfernen.

۲

Schließen Sie keine Spannungsquelle an den C1 / C2-Eingängen an. Sie sind nur zum Anschluss von Stromzangen vorgesehen. Die max. Eingangsspannung beträgt 3V!

1.1.2 Warnhinweise am Gerät

Lesen Sie die Bedienungsanleitung besonders aufmerksam.« Das Symbol erfordert eine Handlung!

CE Das Kennzeichen auf Ihrem Messgerät bescheinigt, dass es die Anforderungen der Europäischen Union für EMV, NSR, und ROHS erfüllt.

X

Das Messgerät ist gemäß dem Elektrogesetz (ElektroG) zu entsorgen.

1.1.3 Warnhinweise bezüglich der Sicherheit der Akkus

- Wenn das Messgerät an einer Installation angeschlossen ist, kann im Batteriefach gefährliche Spannung auftreten. Beim Austausch der Batteriezellen oder vor dem Öffnen des Batterie- / Sicherungsfachdeckel, trennen Sie das Messzubehör vom Messgerät und schalten Sie das Messgerät aus,
- Stellen Sie sicher, dass die Batteriezellen richtig eingesetzt sind, sonst funktioniert das Messgerät nicht, und die Batteriezellen könnten entladen werden.
- Laden Sie keine Alkali-Batterien!
- Verwenden Sie nur das Netzteil das vom Hersteller oder Händler des Messgeräts geliefert wurde!

1.1.4 Sicherheitsrelevante Warnhinweise zu den Messfunktionen

Isolationswiderstand

- Die Messung des Isolationswiderstands darf nur an stromlosen Objekten durchgeführt werden!
- Berühren Sie den Prüfling nicht während der Messung, oder bevor er vollständig entladen ist! Gefahr durch Stromschlag!

Durchgangsprüfungsfunktionen

Die Durchgangsprüfung darf nur an stromlosen Objekten durchgeführt werden!

1.1.5 Hinweise zu den Messfunktionen

Isolationswiderstand

- Der Messbereich wird bei Verwendung des Commander- Prüfstecker verringert.

Diagnosetest

- Falls die Isolationswiderstandswerte (R_{ISO} (15s) oder R_{ISO} (60s)) außerhalb des Bereiches sind, wird der DAR Faktor nicht berechnet. Das Ergebnisfeld ist leer: DAR:_____!
- Falls die Isolationswiderstandswerte (*R_{ISO}(60s) oder R_{ISO}(10 min)*) außerhalb des Bereiches sind, wird der **PI** Faktor nicht berechnet. Das Ergebnisfeld ist leer: PI :_____!

R LOW, Durchgang

- Wenn eine Spannung höher als 10 V (AC oder DC) zwischen den Pr
 üfanschl
 üssen festgestellt wird, wird die Messung nicht durchgef
 ührt.
- Parallele Schleifen können die Prüfergebnisse beeinflussen.

Erde, Erde 2 Klemmen, Ro

- Wenn eine Spannung höher als 10 V (Erde, Erde 2 Klemmen) oder 30 V Ro) festgestellt wird, wird die Messung nicht durchgeführt.
- Die Berührungslose Erdungswiderstandsmessung (mit zwei Stromzangen) ermöglicht eine einfache Prüfung der einzelnen Erdungsstangen in großen Erdungssystem. Es ist besonders geeignet für die Verwendung in städtischen Gebieten, weil es in der Regel keine Möglichkeit, die Prüfspitzen zu platzieren.
- Für die zwei Klemmen Erdungswiderstands Messung müssen die Klemmen A 1018 und A 1019 verwendet werden. Die Klemmen A 1391 werden nicht unterstützt. Der Abstand zwischen den Stromzangen sollte mindestens 30 cm betragen.
- Für spezifische Erdungswiderstandsmessungen wird der ρ Adapter A 1199 verwendet.

RCD t, RCD I, RCD Uc, RCD Auto

- Die für eine Funktion eingestellten Parameter werden auch für andere RCD-Funktionen beibehalten.
- Selektive (zeitverzögerte) RCDs haben ein verzögertes Ansprechverhalten. Da die Berührungsspannung bei der Vorprüfung oder anderen RCD Prüfungen die Zeitverzögerung beeinflusst, dauert es eine gewisse Zeit um in den normalen Zustand wiederherzustellen. Daher ist eine Zeitverzögerung von 30 s vor Durchführung der Auslöseprüfung standardmäßig eingestellt.
- Tragbare RCDs (PRCD, PRCD-K und PRCD-S) werden als allgemeine (unverzögerte) RCDs geprüft. Auslösezeiten, Auslösestrom und Berührungsspannungsgrenzen sind gleich der Grenzen der Allgemeinen (unverzögerten) RCDs.
- Die RCD-Funktion Zs dauert länger, bietet aber eine viel bessere Genauigkeit des Fehlerschleifenwiderstands (im Vergleich zum R_L Teilergebnis in der Berührungsspannungsfunktion).
- Der Auto-Test wird ohne die Prüfungen x5 beendet, falls der RCD Typ A, F, B und B+ mit Nennfehlerströmen von I_{dN} = 300 mA, 500 mA und 1000 mA, oder der RCD Typ AC mit einem Bemessungsfehlerstrom von I_{dN} = 1000 mA geprüft wird. In diesem Fall ist das Prüfergebnis des Auto-Tests bestanden, wenn alle anderen Ergebnisse bestanden sind, und die Angaben für x5 werden weggelassen.

- Prüfungen auf Empfindlichkeit Idn(+) und Idn(-) werden bei selektiven RCDs Typen weggelassen.
- Die Auslösezeitmessung für B und B+ RCD-Typen in der AUTO-Funktion wird mit sinusförmigen Prüfstrom durchgeführt, während die Auslösestrommessung mit DC Prüfstrom durchgeführt wird (nur MI 3152).

Z LOOP, Zs rcd

- Die angegebene Genauigkeit der gepr
 üften Parameter gilt nur, wenn die Netzspannung w
 ährend der Messung stabil ist.
- Die Messung des Fehlerschleifenwiderstands (Z loop) löst den RCD aus.
- Die Messung Zs rcd löst normalerweise den RCD nicht aus Jedoch kann der RCD auslösen, falls ein Ableitstrom vom L- zum PE-Leiter fließt.

Z line / Spannungsabfall

- Bei der Messung von Z_{Line-Line} mit miteinander verbundenen Pr
 üfleitungen PE und N des Messger
 äts zeigt das Messger
 ät eine Warnung vor gef
 ährlicher Schutzleiterspannung an. Die Messung wird dennoch durchgef
 ührt.
- Die angegebene Genauigkeit der geprüften Parameter gilt nur, wenn die Netzspannung während der Messung stabil ist.
- Wenn die Referenzimpedanz nicht eingestellt wird, wird f
 ür ZREF vom Wert 0,00 Ω ausgegangen.

Leistung, Oberwellen, Ströme

Beleuchtungsstärke

- Luxmeter Sensor Typ B und Luxmeter Sensor Typ C werden vom Gerät unterstützt.
- Künstliche Lichtquellen erreichen die volle Leistung im Betriebs erst nach einer gewissen Zeit (siehe technische Daten für Lichtquellen) und daher sollten sie eine gewisse Zeit vorher eingeschaltet sein, bevor die Messungen durchgeführt werden.
- Stellen Sie sicher, dass für eine genaue Messung, der Milchglaskolben ohne Schatten der Hand, des Körpers oder andere unerwünschte Objekte beleuchtet ist.
- Weitere Informationen finden Sie am Ende dieser Bedienungsanleitung.

Rpe

- Die angegebene Genauigkeit der geprüften Parameter gilt nur, wenn die Netzspannung während der Messung stabil ist.
- Die Messung löst eine RCD aus, wenn der Parameter RCD auf "JNein" eingestellt ist.
- Die Messung löst normalerweise eine RCD nicht aus, wenn der Parameter RCD auf "Ja" eingestellt ist. Jedoch kann der RCD auslösen, falls ein Ableitstrom vom L- zum PE-Leiter fließt.

IMD

 Es wird empfohlen, alle Geräte vom Netz zu trennen, regelmäßige Testergebnisse zu erhalten. Ein angeschlossenes Gerät wird den Isolationswiderstand Schwellentest beeinflussen.

Z line m Ω , Z loop m Ω

• Verwenden Sie den A 1143 Euro Z 290 A Adapter für diese Messung.

Auto Tests

 Die Spannungsabfall (dU) Messung in jeder Auto Test Sequenz wird nur aktiviert, wenn Z_{REF} eingestellt ist.

1.2 Prüfung Potential auf dem PE-Anschluss

In bestimmten Fällen kann durch Fehler an der Schutzleiteranlage oder anderen zugänglichen Metallteilen Spannung anliegen. Dies ist eine sehr gefährliche Situation, da die Teile mit der Betriebserdung verbunden sind. Um die Installation ordnungsgemäß auf diesen Fehler hin

überprüfen, sollte die Taste als Indikator vor der Durchführung Live-Tests verwendet werden.

Beispiele für die Verwendung des PE-Prüfanschlusses

Abbildung 1.1: Vertauschte Leiter L und PE (Commander-Prüfstecker)

Abbildung 1.2: Vertauschte Leiter L und PE (Anbringung der Dreileiter-Prüfleitung)

Warnung!

Phasen- und Schutzleiter vertauscht! Äußerst gefährliche Situation! Wenn am geprüften Schutzleiteranschluss gefährliche Spannung festgestellt wird, stoppen Sie sofort alle Messungen und und sorgen Sie dafür, dass die Fehlerursache eliminiert wurde, bevor Sie weitere Tätigkeiten vornehmen!

Messverfahren

- Schließen Sie die Prüfleitungen am Messgerät an.
- Schließen Sie die Pr
 üfleitungen am Pr
 üfling an., siehe Abbildung 1.1 und Abbildung 1.2.
- Berühren Sie Prüfspitze für mindestens zwei Sekunden.
 Falls der PE-Anschluss mit einer Phasenspannung verbunden ist, wird eine Warnmeldung angezeigt, der Gerätesummer wird aktiviert, weitere Messungen in den Funktionen Z-Loop, Zs rcd, RCD Prüfungen und Auto Test Seguenzen sind gesperrt.

Hinweise

- Für eine korrekte Prüfung des Schutzleiteranschlusses, muss die Taste für mindestens 2 Sekunden berührt werden.
- Achten Sie darauf, das Sie während der Durchführung des Tests, auf nicht-isolierten Boden stehen, da sonst Testergebnis falsch sein kann!

1.3 Batterie und Aufladen

Im Messgerät werden sechs Alkali- oder wieder aufladbare NiMH-Akkus der Größe AA verwendet. Die Nennbetriebszeit ist für Zellen mit einer Nennkapazität von 2100 mAh angegeben. Der Batterieladezustand wird immer im oberen rechten Teil des Displays angezeigt. Falls die Batterieladung zu schwach ist, schaltet das Messgerät automatisch ab.

Die Akkus werden immer dann geladen, wenn das Netzteil an das Messgerät angeschlossen ist. Eine interne Schaltung steuert den Ladevorgang und sorgt für eine maximale Batterielebensdauer.

Siehe Kapitel **3.2** Anschlussfeld und **4.4.2** Batterieanzeige für die Polarität der Netzteilbuchse und Batterieanzeige

Hinweise:

- Das Ladegerät im Instrument ist ein so genanntes Zellenpack-Ladegerät. Das bedeutet, dass die Akkuzellen während des Ladens in Serie geschaltet sind. Die Akkuzellen müssen gleichwertig sein (derselbe Ladezustand und Typ, dasselbe Alter).
- Entfernen Sie alle Batterien aus dem Batteriefach, wenn das Instrument über einen längeren Zeitraum nicht benutzt wird.
- Es können Alkali- oder wieder aufladbare NiMH-Akkus der Größe AAA verwendet werden. Metrel empfiehlt nur den Einsatz von wieder aufladbaren Batterien von 2100 mAh oder mehr.
- Während des Ladens der Akkuzellen können unvorhersehbare chemische Prozesse auftreten, falls diese über einen längeren Zeitraum (über 6 Monate) nicht benutzt wurden. In diesem Fall wird empfiehlt METREL, den Lade-/Entladevorgang mindestens 2-4 Mal zu wiederholen.
- Wenn nach mehreren Lade-/Entladezyklen keine Verbesserung erreicht wird, sollte der Zustand der einzelnen Akkuzellen überprüft werden (durch Vergleich der Batteriespannungen, Überprüfen in einem Akku-Ladegerät usw.). Es ist sehr wahrscheinlich, dass sich nur einige der Akkuzellen verschlechtert haben. Eine abweichende Akkuzelle kann die Ursache für ein Fehlverhalten des gesamten Akkupacks sein!
- Die oben beschriebenen Effekte sollten nicht mit dem normalen Nachlassen der Akkukapazität im Laufe der Zeit verwechselt werden. Ein Akku verliert auch an Kapazität, wenn er wiederholt geladen/entladen wird. Diese Information ist in den vom Akkuhersteller bereitgestellten technischen Daten enthalten.

1.4 Geltende Normen

Die EurotestXC-Instrumente werden in gemäß den folgenden Vorschriften gebaut und geprüft:

Elektromagnetisch	e Verträglichkeit (EMV)					
EN 61326-1	Elektrische Mess-, Steuer-, Regel- und Laborgeräte					
	- EMV-Anforderungen					
	Klasse B (handgehaltene Geräte in kontrollierten elektromagnetischen					
	Umgebungen)					
Sicherheit (NSR)						
EN 61010-1	Elektrische Mess-, Steuer-, Regel- und Laborgeräte - EMV-Anforderungen -					
	Teil 1: Allgemeine Anforderungen					
EN 61010-2-030	Elektrische Mess-, Steuer-, Regel- und Laborgeräte - EMV-Anforderungen -					
	Teil 2-030: Besondere Bestimmungen für Prüf- und Messstromkreise					
EN 61010-031	Elektrische Mess-, Steuer-, Regel- und Laborgeräte - EMV-Anforderungen -					
	Teil 031: Sicherheitsbestimmungen für handgehaltenes Messzubehör zum					
	Messen und Prüfen.					
EN 61010-2-032	Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und					
	Laborgeräte - Teil 2-032: Besondere Anforderungen für handgehaltene und					
	handbediente Stromsonden für elektrische Messungen					
Funktionalität						
EN 61557	Elektrische Sicherheit in Niederspannungsnetzen bis 1000 V _{AC} und DC 1500					
	V _{AC} Gerate zum Prufen, Messen oder Überwachen von Schutzmalsnahmen.					
	Teil 1: Allgemeine Anforderungen					
	Teil 2: Isolationswiderstand					
	Teil 3: Schleifenwiderstand					
	Tell 4: Widerstand der Erdverbindung und der					
	Potentialausgleichsverbindungen					
	Tell 6: Wirksamkeit von Fenierstromschutzeinrichtungen (RCDs) in TT-, TN-					
	und IT-Netzen					
	Teil 7: Drehfeld					
	Leil 10: Kombinierte Messgeräte zum Prüfen, Messen oder Überwachen von					
	Schutzmaisnanmen					
	Tell 12: Leistungsmessung und Überwachen von Betriebsmittein (PMD)					
DIN 5032	Lichtmessung					
	Tell 7. Klasseneintellung von Beleuchtungsstarke- und					
Deferenznermen fi						
	If elektrische installationen und Komponenten					
EN 01000	Femersuom-/Differenzsuomschutzschäller onne eingebauten					
EN 61000	Anwendungen Echleratrom /Differenzetromechutzechalter ehne eingehauten					
EN 61009	remensuom-/Dimerenzsuomschutzschalter onne eingebauten					
	Oberstromschutz (RCCBS) für Hausinstallationen und für annliche					
	Anwendungen					
100304-4-41	Emonten von Niederspannungsanlagen Tell 4-41 Schutzmalsnahmen -					
DC 7674	Schulz gegen elektrischen Schlag					
R2 1011	ELE WIRING Regulations (1/th edition) (Verdrantungsbestimmungen)					
AS/NZS 3017	Elektrische Anlagen - Verifikations-Richtlinien					

2 Messgerätesatz und Zubehör

2.1 Standard-Lieferumfang MI 3152 EurotestXC

- Messgerät MI 3152 EurotestXC
- Gepolsterte Tragetasche
- Erdungssatz 3-Leitungen, 20 m
- Commander- Prüfstecker
- Prüfleitung, 3 x 1,5 m
- Prüfspitzen, 3 Stück
- Krokodilklemmen, 3 Stück
- Ein Satz Tragegurte
- RS232-PS/2 Kabel
- USB Kabel
- Ni-MH Akkus
- Stromversorgungsadapter
- CD mit Bedienungsanleitung, "Leitfaden zum Prüfen und Verifizierung von Niederspannungsanlagen" Handbuch und PC-Software EurolinkPRO.
- Kurzanleitung
- Kalibrierzertifikat

2.2 Standard-Lieferumfang MI 3152H EurotestXC 2,5kV

- Standard-Lieferumfang MI 3152H EurotestXC 2,5kV
- Gepolsterte Tragetasche
- Erdungssatz 3-Leitungen, 20 m
- Commander- Prüfstecker
- Prüfleitung, 3 x 1,5 m
- 2,5 kV Prüfleitung, 2 x 1,5 m
- Prüfspitzen, 3 Stück
- Krokodilklemmen, 3 Stück
- Ein Satz Tragegurte
- RS232-PS/2 Kabel
- USB Kabel
- Ni-MH Akkus
- Stromversorgungsadapter
- CD mit Bedienungsanleitung, "Leitfaden zum Pr
 üfen und Verifizierung von Niederspannungsanlagen" Handbuch und PC-Software EurolinkPRO.
- Kurzanleitung
- Kalibrierzertifikat

2.2.1 Optionales Zubehör

Eine Liste des optionalen Zubehörs, das auf Anfrage bei Ihrem Händler erhältlich ist, finden Sie im Anhang.

3 Gerätebeschreibung

3.1 Vorderseite

Abbildung 3.1: Vorderseite

1	Farbdisplay mit Touch Screen
2	SPEICHER-Taste
۲	Speichert die aktuellen Messergebnisse
3	CURSER Tasten
5	Navigieren in den Menüs
	RUN-Taste
	Start / Stop der ausgewählten Messung.
4	Öffnet ausgewähltes Menü oder ausgewählte Option
	Ansicht der verfügbaren Werte der ausgewählten Parameter /
	Grenzwerte.
F	OPTIONS-Taste
5	Zeigt detaillierte Ansicht der Optionen
<u> </u>	ESCAPE-Taste
0	Zurück zum vorherigen Menü
	EIN / AUS Schalter
	Messgerät ein / aus schalten.
7	Das Gerät schaltet sich nach 10 Minuten Leerlauf automatisch aus.
	(keine Taste gedrückt oder keine Touchscreen-Aktivität)
	Drücken Sie die Taste für 5 s bis das Gerät ausschaltet.
0	Taste Grundeinstellungen
0	Menü Grundeinstellungen
0	Taste HINTERGRUNDBELEUCHTUNG
9	Toggle Bildschirmhelligkeit zwischen hoher und niedriger Intensität.
10	Taste MEMORY ORGANIZER
10	Shortcut-Taste für den Aufruf des Menü Memory Organizer.
11	Taste EINZELPRÜFUNGEN
1.1	Shortcut-Taste für den Aufruf des Menü Einzelprüfungen.
12	Taste AUTO-TEST

Shortcut-Taste für den Aufruf des Menü Auto-Test.

3.2 Anschlussfeld

Abbildung 3.2: Anschlussfeld

1 Ladebuchse

2	USB Kommunikationsschnittstelle Kommunikation mit PC USB (1.1)
3	PS/2 Kommunikationsschnittstelle Kommunikation mit der seriellen PC-Schnittstelle RS232 Anschluss für optionale Messadapter Anschluss für Barcode- /RFID-Lesegeräte
4	C1 Eingang Stromzangen Messeingang
5	Prüfanschluss
6	Schutzabdeckung

- Die maximal zulässige Spannung am Prüfanschluss C1 beträgt 3V!
- Die maximal kurzzeitig zulässige Spannung vom externen Netzteil beträgt 14 V!

3.3 Rückseite

Abbildung 3.3: Rückansicht

- 1 Abdeckung Batterie-/Sicherungsfach
- 2 Schrauben für Abdeckung Batterie-/ Sicherungsfach
- 3 Infoschild Rückseite

Abbildung 3.4: Batterie- und Sicherungsfach

Sicherung F1 1 M 315 mA / 250 V Sicherung F2 und F3 2 F 4 A / 500 V (Schaltleistung 50 kA) 3 Schild mit Seriennummer Batteriezellen 4 Größe AA, Alkaline/ wieder aufladbar NiMH 2 1 Line impactance (EN 61557-3), Voltage Drop ZL-N(1), 0.25(1 = 9.68x1, 1PSC; catoulated value AU 0.0 + 96.5%, catoulated value Normal voltage; SV = 134V/4874 = 65Hz 185V + 260V/4874 = 65Hz 21V + 661(4454 = 65Hz 21V + 661(4454 = 65Hz 21V + 600(4157-3)
 Voltage. frequency

 U: 0V - 550V /f: 0Hz, 15Hz + 500Hz

 Phase rotation (EN 61557-7)

 U: 100V + 550V /f: 15Hz + 500Hz

 U: 100V + 550V /f: 15Hz + 500Hz

 0: 00 mA - 19 9A

 0: 00 mA - 199.9A

 Us + Ius T

 0: 00 mA - 199.9A
 3 Harmonics U_{s0} + U_{ses} THDU I_{s0} + I_{ses} THDI Power Q. S. PF. THDU 185V - 266V/ 45Hz - 65Hz PE-resistance RPE - 0.003 - 1.4990. Tast current: min. 200mA at 2(3) Normar voltage 30V - 134V/ 45Hz - 65Hz 185V - 266V/ 45Hz - 65Hz RCD (EN 6157-6) type AC, A, F, B, B+ Ia: 10mA, 30mA, 100mA, 300mA, 500mA, 1A Earth resistance 3 - wire method (EN 61557-5) R : $2.00 \Omega = 1999 \Omega$ Open-circuit voltage: $< 30 V_{\sim}$ Short-circuit current: < 30 mAContactless method < < <R : $0.00 \Omega = 38.9 \Omega$
 1: 10m2, 30m2, 100m2, 300m2, 300m2, 300m2, 300m2, 100m1, 200m1, 200m2, 300m2, 300m
 IMD testing (EN 61557-12)

 Calibrated resistance

 5 kΩ - 640 kΩ

 First fault current (ISFL)

 1: 0.0 mA + 19.9 mA
 Illumination E : 0.01 k = 19.99 klx METREL

Abbildung 3.5: Unterseite

- 1 Infoschild unten
- 2 Tragegurthalterungen
- 3 Seitenabdeckungen

3.4 Tragen des Messgeräts

Im Standard-Lieferumfang ist ein Tragegurt enthalten. Das Messgerät kann auf verschiedene Arten getragen werden. Der Bediener kann je nach Bedienart eine der folgenden Beispielarten anwenden:

Das Messgerät hängt um den Hals des Benutzers - schnelles Aufstellen und Mitnehmen.

Das Messgerät kann auch in der Tragetasche liegend verwendet werden, das Prüfkabel kann über die vordere Öffnung an das Gerät angeschlossen werden.

3.4.1 Sicheres Anbringen des Riemens

Wählen Sie zwischen einer der beiden Methoden:

Abbildung 3.6: Erste Methode

Abbildung 3.7: Alternative Methode

Prüfen Sie den sicheren Sitz regelmäßig.

4 Bedienung des Messgeräts

Die Bedienung des CE MultiTesterXA erfolgt über eine Tastatur oder Touch Sreen.

4.1 Allgemeine Bedeutung der Tasten

	Cursor-Tasten: Auswahl der entsprechenden Option
x	Run-Taste Bestätigen der ausgewählten Option Start und Stop der Messungen Prüfung des Schutzleiteranschlusses
5	 Escape-Taste: Rückkehr zum vorherigen Menü ohne die Änderungen wirksam werden zu lassen Abbruch der Messungen
	Option-Taste: erweitern der Spalten in der Menüsteuerung
	Speichern-Taste Speichert die Pr üfergebnisse
• 🖸	Die Taste Einzelprüfung wird verwendet für: Shortcut-Taste für den Aufruf des Menüs Einzelprüfungen.
	Die Taste Auto Test wird verwendet für: Shortcut-Taste für den Aufruf des Menü Auto-Test.
Lee	Die Taste Memory Organizer wird verwendet für:
*	 Die Taste Hintergrundbeleuchtung wird verwendet für: Toggeln der Bildschirmhelligkeit zwischen hoher und niedriger Intensität.
₫	Die Taste Allgemeine Einstellungen wird verwendet für:
0	 Die Taste Ein / Aus wird verwendet für: Messgerät Ein / Aus schalten; durch Drücken und 5 s halten, das Messgerät ausschalten;

4.2 Allgemeine Bedeutung der Touch-Gesten

R	 Tippen (kurz auf die Touch-Oberfläche mit der Fingerspitze) wird verwendet, um: Auswahl der entsprechenden Option Bestätigen der ausgewählten Option Start und Stop der Messungen 					
An	 Streichen / wischen (berühren, bewegen) hoch /runter: im Inhalt auf der gleichen Ebene blättern navigieren zwischen den Ansichten auf gleichen Ebene 					
Pro- lang	 Lange drücken (mit der Fingerspitze min. 1 s auf die Touch- Oberfläche tippen) Auswahl zusätzlicher Tasten (virtuelle Tastatur) Wählen Sie das Steuerkreuz aus dem Einzel-Test-Bildschirm aus 					
	 Escape Symbol antippen: Rückkehr zum vorherigen Menü ohne die Änderungen wirksam werden zu lassen Abbruch der Messungen 					

4.3 Virtuelle Tastatur

Ł							(_	09:44
_{Name} Objec	t							
Q V	2 N	3 E	R ·	Ť,	6 Y	7 U	8 9 1 0) P
	© S	D D	\$ F	% G	Å	Ĵ	? K	Ĺ
shift	Ī	×	Ċ	Ŭ.) B	Ň	Å	←
e	ng	;				:	12#	↓

Abbildung 4.1: Virtuelle Tastatur

shift	Umschaltung zwischen Groß- und Kleinschreibung Nur aktiv, wenn Buchstaben Tastaturbelegung ausgewählt ist.
←	Rück-Taste Löscht letztes Zeichen oder alle ausgewählten Zeichen. (Falls 2 Sekunden lang gedrückt, werden alle Zeichen ausgewählt).
┙	Enter bestätigt den neuen Text.
12#	Aktiviert numerische / Symbol Tastaturbelegung
ABC	Aktiviert Buchstaben Tastaturbelegung
eng	Englische Tastaturbelegung
GR	Griechische Tastaturbelegung
ſ	Zurück zum vorherigen Menü ohne die Änderungen wirksam werden zu lassen.

4.4 Anzeige und akustische Signale

4.4.1 Spannungsmonitor

Der Spannungsmonitor zeigt online die Spannungen an den Prüfanschlüssen und Informationen über aktive Prüfanschlüsse im AC-Messmodus an.

$\stackrel{L}{\smile} \begin{array}{c} 230 \\ 230 \\ 230 \end{array} \stackrel{PE}{\longrightarrow} \begin{array}{c} N \\ \bullet \\ \bullet \\ \end{array}$	Die Online-Spannungen werden zusammen mit der Angabe der Prüfanschlüsse angezeigt. Alle drei Prüfklemmen werden für die ausgewählte Messung benutzt.				
• 230 0 0 • • 230 0 •	Die Online-Spannungen werden zusammen mit der Angabe der Prüfanschlüsse angezeigt. Die Prüfklemmen L und N werden für die ausgewählte Messung benutzt.				
L PE N	L und PE sind die aktiven Prüfklemmen.				
	L und PE sind die aktiven Prüfanschlüsse; für einen korrekten Zustand der Eingangsspannung ist der N-Anschluss ebenfalls anzuschließen.				
	L und N sind die aktiven Prüfklemmen.				
	Für einen korrekten Zustand der Eingangsspannung ist der PE-Anschluss ebenfalls anzuschließen.				
	Polarität der Prüfspannung, die an den Ausgangsanschlüssen L und N anliegt.				
	L und PE sind die aktiven Prüfklemmen.				
L PE N + _/	Polarität der Prüfspannung, die an den Ausgangsanschlüssen L und PE				
L PE N O L PE N O O	anliegt.				
HV+ HV-	2,5 kV Isolationsmessung, Prüfklemmendarstellung (nur MI 3152H)				

4.4.2 Batterieanzeige

Die Batterieanzeige zeigt den Ladezustand der Batterie und den Anschluss des externen Ladegeräts an.

	Batteriekapazitätsanzeige			
	Batterie ist in gutem Zustand			
Ҁ∎∎∎∎	Batterie ist voll aufgeladen			
	Geringer Ladestand.			
	Batterie ist zu schwach, um ein korrektes Ergebnis zu gewährleisten. Batteriezellen auswechseln oder Akkus wieder aufladen.			
(><	Leere Batterie oder keine Batterie eingelegt.			
4	Ladeprozess läuft (wenn der Netzteiladapter angeschlossen ist).			

4.4.3 Mess Aktionen und Meldungen

	Die Bedingungen an den Eingangsklemmen erlauben dem Start der Messung. Beachten Sie andere angezeigte Warnungen und Meldungen.
	Die Bedingungen an den Eingangsklemmen erlauben nicht mit der Messung. Beachten Sie angezeigte Warnungen und Meldungen.
Þ	Weiter zum nächsten Schritt im Prüfablauf.
	Die Messung stoppen.
	Ergebnisse können gespeichert werden.
	Startet die Messleitungskompensation in Rlow / Durchgangsmessung. Startet Zref Leitungsimpedanz Messung der am Ausgangspunkt der Elektroinstallation als Spannungsabfall-Messung. Mit Drücken dieser Touch Taste ist Zref ist auf 0,00 Ω einzustellen, das Messgerät ist nicht an einer Spannungsquelle angeschlossen.
ρ	Verwenden Sie den A 1199 Spezifischer Erdwiderstand Adapter für diesen Test.
Ζ	Verwenden Sie den A 1143 Euro Z 290 A Adapter für diesen Test.
LUX	Verwenden Sie den A 1172 oder A 1173 Luxmeter Sensor für diesen Test.
2	Countdown-Timer (in Sekunden) innerhalb Messung.
X	Messung läuft, beachten Sie die angezeigten Warnungen.
!∕ ⊋	RCD hat während der Messung ausgelöst (in RCD-Funktionen).

	Messgerät ist überhitzt. Die Messung ist nicht erlaubt, bis die Temperatur unter dem zulässigen Grenzwert sinkt.
-w-	Während der Messung wurde hohes Störrauschen festgestellt. Messergebnisse sind möglicherweise beeinträchtigt.
	Anzeige der Rauschspannung oberhalb von 5 V zwischen H und E-Terminals während Erdungswiderstandsmessung.
¢	L und N sind vertauscht. In den meisten Geräteprofilen werden die L und N Prüfanschlüsse, je nach erfassten Spannungen am Eingang automatisch umgepolt. In Geräteprofilen für Länder, in denen die Position des Phasen- und Nullleiter-Anschluss definiert sind, funktioniert die ausgewählte Funktion nicht.
4	 Warnung! An den Prüfanschlüssen liegt Hochspannung an. Nach Beendigung der Isolationsprüfung wird der Prüfling automatisch durch das Messgerät entladen. Wenn eine Isolationswiderstandsmessung an einem kapazitiven Objekt durchgeführt worden ist, kann die automatische Entladung möglicherweise nicht sofort erfolgen! Das Warnsymbol und die tatsächliche Spannung werden während der Entladung angezeigt, bis Spannung unter 30 V.
4	Warnung! Gefährliche Spannung am PE-Anschluss! Tätigkeiten sofort beenden und den Fehler/das Anschlussproblem beseitigen, bevor mit irgendwelchen Tätigkeiten fortgefahren wird! Dauerwarnton ist an.
CAL	Widerstand der Prüfleitungen in R low/ Durchgangsprüfung wird nicht kompensiert.
CAL	Widerstand der Prüfleitungen in R low/ Durchgangsprüfung wird kompensiert.
Rc	Hoher Widerstand gegen Erde auf den Stromprüfsonden. Messergebnisse sind möglicherweise beeinträchtigt.
Rp	Hoher Widerstand gegen Erde auf den Potential-Prüfsonden. Messergebnisse sind möglicherweise beeinträchtigt.
Rc Rp	Hoher Widerstand gegen Erde auf den Stromprüfsonden und den Potential- Prüfsonden Messergebnisse sind möglicherweise beeinträchtigt.
< I	Ein zu kleiner Strom bei der angegebenen Genauigkeit. Messergebnisse sind möglicherweise beeinträchtigt. Prüfen Sie in den Stromzangen Einstellungen, ob die Empfindlichkeit der Stromzange erhöht werden kann.
	In der Erde 2 Stromzangen Messung sind die Ergebnisse für Widerstände unter 10 Ω sehr genau. Bei höheren Werten (einige 10 Ω) sinkt der Teststrom auf wenige mA. Die Messgenauigkeit für kleine Ströme und Störfestigkeit gegen Rauschströme sind zu berücksichtigen!
	Gemessenes Signal ist außerhalb des Bereichs (abgeschnitten). Messergebnisse sind möglicherweise beeinträchtigt.
SF	Erster Fehlerfall im IT-System (nur MI 3152)
×	Sicherung F1 ist defekt.

4.4.4 Ergebnisanzeige

\checkmark	Das Messergebnis liegt innerhalb der voreingestellten Grenzwerte (BESTANDEN).
×	Das Messergebnis liegt außerhalb der voreingestellten Grenzwerte (NICHT BESTANDEN).
0	Die Messung wurde abgebrochen Beachten Sie angezeigte Warnungen und Meldungen.
	Die RCD t und RCD I Messungen werden nur durchgeführt, wenn die Berührungsspannung in der Vorprüfung bei Nenndifferenzstrom geringer ist als der eingestellte Grenzwert der Berührungsspannung!

4.5 Messgeräte Hauptmenü

Im Hauptmenü können verschiedene Hauptbedienmenüs ausgewählt werden.

Abbildung 4.2: Hauptmenü

Auswahl

Single Tests	Einzelprüfungen Menü für Einzelprüfungen siehe Kapitel 6 <i>Einzelprüfungen</i> .
Auto Tests	Auto Tests Menü für kundenspezifische Prüfungen siehe Kapitel 8 Auto Test.
Memory Organizer	Memory Organizer Menü für das Arbeiten und Verwalten der Prüfdaten, siehe Kapitel 5 <i>Memory Organizer</i> .
⊟ General Settings	Allgemeine Einstellungen Menü für das Einrichten des Gerätes, siehe Kapitel 4.6 Allgemeine <i>Einstellungen</i> .

4.6 Allgemeine Einstellungen

Im Menü **Allgemeine Einstellungen** können die allgemeinen Parameter und Einstellungen des Messgerätes eingegeben oder angezeigt werden.

🗅 General Sett	(08:10	
۲	23	Ĩ
Language	Power Save	Date / Time
E.	<u>רר</u>	್ಷ
Workspace Manager	Profiles	Settings
¢ +	ĺ	
Initial Settings	About	

Abbildung 4.3: Menü Grundeinstellungen

Auswahl

()	Sprache
Language	Auswahl der Gerätesprache
کی Power Save	Energiesparmodus Helligkeit des LCD, Aktivieren / Deaktivieren der Bluetooth Kommunikation
Date / Time	Datum / Uhrzeit Geräte Datum und Uhrzeit
Uorkspace Manager	Workspace Manager Verwalten der Projektdateien. Für weitere Informationen siehe Kapitel 4.8 Menü Workspace Manager .
Profiles	Geräte Profile Auswahl der verfügbaren Geräteprofile, siehe Kapitel 4.7 Geräte Profile .
ेंद्वे	Einstellungen
Settings	Einstellungen der verschiedenen System / Messparameter
후 스	Grundeinstellungen
Initial Settings	Werkseinstellungen
<i>Î</i>	Messgeräte Information
About	Messgeräteinformation

4.6.1 Sprache

In diesem Menü kann die Gerätesprache eingestellt werden.

Abbildung 4.4: Menü Sprache

4.6.2 Energiesparmodus

In diesem Menü können verschiedene Optionen zum Verringern des Leistungsverbrauchs eingestellt werden.

Power Save	¢ 188	01:56
Brightness	Low	>
LCD off time	30 s	>
Bluetooth	Save Mode	>

Abbildung 4.5: Menü Energiesparmodus

Helligkeit	Einstellen der LCD Helligkeit Energieeinsparung bei niedriger Stufe: ca. 15%		
LCD-	Einstellen des Zeitintervalls für das Ausschalten des LCD. LCD wird nach		
Abschaltzeit	dem Drücken einer beliebigen Taste oder Berühren des LCD eingeschaltet. Energieeinsparung bei LCD aus (bei niedriger Helligkeit): ca. 20%		
Bluetooth	Immer eingeschaltet Das Bluetooth-Modul ist kommunikationsbereit. Spar Modus: Das Bluetooth-Modul ist im Schlafen-Modus und funktioniert nicht. Energieeinsparung im Sparmodus: 7 %		

4.6.3 Datum und Uhrzeit

In diesem Menü kann das Datum und die Uhrzeit eingestellt werden.

-	5 Date	e/Time		ć	08:03
	17	Nov	2014	8	3
	^	^	^	^	^
	\sim	\sim	\sim	\sim	\sim
		Set		Cancel	

Abbildung 4.6: Einstellung Datum und Uhrzeit

Hinweis:

4.6.4 Einstellungen

In diesem Menü können verschiedene allgemeine Parameter eingestellt werden.

Abbildung 4.7: Menü Einstellungen

	Vorfügbaro Auswahl	Boschroibung
Touch Screen	[EIN / AUS]	Aktiviert / deaktiviert die Bedienung mit Touchscreen.
RCD Standard	[EN 61008 / EN 61009, IEC 60364-4-41 TN/IT, IEC 60364-4-41 TT, BS 7671; AS/NZS 3017]	Verwendete Standards für RCD-Prüfungen. Weitere Informationen finden Sie am Ende dieses Kapitels. Die maximalen RCD-Trennzeiten weichen in unterschiedlichen Normen voneinander ab. Die in den einzelnen Normen festgelegten Auslösezeiten sind nachstehend aufgeführt.
Isc Faktor	[0,20 3,00] Standardwert 1,00	Der Kurzschlussstrom Isc im Netz ist wichtig für die Wahl oder Überprüfung von Schutzschaltern (Sicherungen, Überstromschutzschalter, RCDs). Der Wert sollte nach den örtlichen Bestimmungen eingestellt werden.
Längeneinheit	[m, ft]	Längeneinheit für spezifische Erdungswiderstandsmessung.

Ch1 Stromzangen Typ	[A 1018, A 1019, A1391]	Variante des Stromzange
Bereich	A 1018:[20 A] A1019: [20 A] A 1391: [40 A, 300 A]	Messbereich für den ausgewählten Stromzange Der Messbereich des Messgerätes ist zu berücksichtigen. Messbereich der Stromzange kann höher sein als der des Messgeräts.
Sicherungen zusammenfassen	[Ja, Nein]	[Ja]: Eingestellte Sicherungstypen und Parameter in einer Funktion werden auch für andere Funktionen beibehalten! [NEIN]: [NEIN]: Die Sicherungsparameter werden nur in der Funktion berücksichtigt, wo sie eingerichtet wurden .
Commander	[aktiviert, deaktiviert]	Deaktiviert dient dazu, die Remote-Tasten der Commander-Geräte zu sperren. Bei starken elektromagnetischen Störungen können im Betrieb des Commander-Geräts Unregelmäßigkeiten auftreten.
Erdungsanlage	[TN/TT, IT (nur MI 3152)]	Der Spannungsmonitor und die Messfunktionen sind für die ausgewählte Erdungsanlage geeignet.

4.6.4.1 RCD Standard

Die maximalen RCD-Trennzeiten weichen in unterschiedlichen Normen voneinander ab. Die in den einzelnen Normen festgelegten Auslösezeiten sind nachstehend aufgeführt.

	¹ ⁄ ₂ ×Ι _{ΔΝ} ¹⁾	I _{AN}	$2 \times I_{\Delta N}$	5×I _{∆N}	
Allgemeine RCDs (unverzögert)	t_{Δ} > 300 ms	t_{Δ} < 300 ms	t_{Δ} < 150 ms	t_{Δ} < 40 ms	
Selektive RCDs (zeitverzögert)	t_{Δ} > 500 ms	130 ms < t_{Δ} < 500 ms	60 ms < t_{Δ} < 200 ms	50 ms < t_{Δ} < 150 ms	

Tabelle 4.1: Auslösezeiten gemäß EN 61008 / EN 61009

Die Prüfung gemäß der Norm IEC / HD 60364-4-41 hat zwei wählbare Möglichkeiten:

- IEC 60364-4-41 TN/IT und
- IEC 60364-4-41 TT

Die Möglichkeiten unterscheiden sich in den maximalen Abschaltzeiten, definiert nach IEC / HD 60364-4-41 Tabelle 41.1.

	U ₀ ³⁾	$\frac{1}{2} \times I_{\Delta N}^{(1)}$	I _{AN}	2 ×Ι _{ΔΝ}	5×I _{∆N}
TN/TT,	≤ 120 V	t _∆ > 800 ms	$t_{\Delta} \leq 800 \text{ ms}$		
IT	\leq 230 V	t _∆ > 400 ms	t _∆ < 400 ms	t < 150 mg	t < 10 mo
тт	\leq 120 V	t _∆ > 300 ms	t _∆ < 300 ms	$t_{\Delta} \leq 150 \text{ ms}$	l_{Δ} < 40 ms
	\leq 230 V	t_{Δ} > 200 ms	t_{Δ} < 200 ms		

Tabelle 4.2: Auslösezeiten gemäß IEC/HD 60364-4-41

	½×I _{∆N} 1)	Ι _{ΔΝ}	2×Ι _{ΔΝ}	5×I _{∆N}	
Allgemeine RCDs (unverzögert)	t _∆ > 1999 ms	t_{Δ} < 300 ms	t_{Δ} < 150 ms	t_{Δ} < 40 ms	
Selektive RCDs (zeitverzögert)	t _∆ > 1999 ms	130 ms < t_{Δ} < 500 ms	60 ms < t_{Δ} < 200 ms	50 ms < t_{Δ} < 150 ms	

Tabelle 4.3: Auslösezeiten gemäß BS 7671

RCD Typ	l _∆ N (mA)	$\frac{1}{2} \times I_{\Delta N}^{1}$ t_{Δ}	$I_{\Delta N} t_{\Delta}$	2×I _{∆N} t _∆	5×I _{∆N} t _∆	Hinweis
I	≤ 10		40 ms	40 ms	40 ms	
II	> 10 ≤ 30	> 999 ms	300 ms	150 ms	40 ms	Maximala Abschaltzait
111	> 30		300 ms	150 ms	40 ms	Maximale Abschaltzeit
NS	> 20	> 000 mc	500 ms	200 ms	150 ms	
IV 3 ~ 30		~ 999 ms	130 ms	60 ms	50 ms	Minimale Nichtauslösedauer

Tabelle 4.4: Auslösezeiten gemäß AS/NZS 3017²⁾

Standard	$\frac{1}{2} \times I_{\Delta N}$	Ι _{ΔΝ}	$2 \times I_{\Delta N}$	5×I _{∆N}
EN 61008 / EN 61009	300 ms	300 ms	150 ms	40 ms
EN 60364-4-41	1000 ms	1000 ms	150 ms	40 ms
BS 7671	2000 ms	300 ms	150 ms	40 ms
AS/NZS 3017 (I, II, III)	1000 ms	1000 ms	150 ms	40 ms

Tabelle 4.5: Maximale Prüfzeiten hinsichtlich des gewählten Prüfstroms für ein selektives(unverzögertes) RCD.

Standard	½×I _{∆N}	$I_{\Delta N}$	2×I _{∆N}	5×I _{∆N}
EN 61008 / EN 61009	500 ms	500 ms	200 ms	150 ms
EN 60364-4-41	1000 ms	1000 ms	150 ms	40 ms
BS 7671	2000 ms	500 ms	200 ms	150 ms
AS/NZS 3017 (IV)	1000 ms	1000 ms	200 ms	150 ms

Tabelle 4.6: Maximale Prüfzeiten hinsichtlich des gewählten Prüfstroms für ein selektives(verzögertes) RCD.

¹⁾ Mindestprüfzeitraum für den Strom von $\frac{1}{2} \times I_{\Delta N}$, RCD darf nicht auslösen.

²⁾ Prüfstrom und Messgenauigkeit entsprechen den Anforderungen der AS/NZS 3017

³⁾ U_0 ist die Nenn U_{LPE} Spannung.

Hinweis:

 Auslösezeitgrenzen für PRCD, PRCD-K und PRCD-S sind gleich den allgemeinen (nicht verzögerten) RCDs.

4.6.5 Grundeinstellungen

In diesem Menü können die Geräteeinstellungen, Messparameter und Grenzwerte auf die Werkseinstellungen zurückgesetzt werden.

Abbildung 4.8: Menü Grundeinstellungen

Warnung:

Folgende kundenspezifischen Einstellungen gehen verloren wenn das Gerät auf die Grundeinstellungen zurückgesetzt wird:

- Messwertgrenzen und Parameter
- Globale Parameter und Systemeinstellungen im Menü Grundeinstellungen.

Hinweis:

Folgende kundenspezifischen Einstellungen bleiben:

- Profileinstellungen
- Daten im Speicher

4.6.6 Messgeräte Information

In diesem Menü können die Gerätedaten (Name, Version, Seriennummer, Kalibrierdatum) angezeigt werden.

About	(08:39
Name	MI 3152 EurotestXC
S/N	14400884
Version	1.1.51.3709 - ALAA
Fuse version	1.06
Date of calibration	11.02.2015
(C) Metrel d.d., 2015,	, http://www.metrel.si

Abbildung 4.9: Geräte-Info-Bildschirm
4.7 Geräte Profile

Der Profiles	08:14 ر
Profiles	
ALAA – EU	
ALAB – UK	
	444

In diesem Menü kann ein Geräteprofil aus den verfügbaren Profilen ausgewählt werden.

Abbildung 4.10: Menü Geräteprofil

Das Gerät verwendet verschiedene spezifische System- und Messeinstellungen in Bezug auf den Umfang der Arbeiten oder das Land in dem es verwendet wird. Die spezifischen Einstellungen sind in Geräteprofilen gespeichert.

Standardmäßig ist in jedem Gerät mindestens ein Profil aktiviert Um weitere Profile dem Messgerät hinzufügen zu können, ist der richtige Lizenzschlüssel erforderlich,

Wenn verschiedene Profile vorhanden sind, können sie in diesem Menü ausgewählt werden

4.8 Menü Workspace Manager

Mit dem Workspace Manager werden die verschiedenen Workspaces und Exports, die im internen Datenspeicher gespeichert sind, verwaltet.

4.8.1 Workspaces und Exports

Das Arbeiten mit dem MI 3152(H) EurotestXC kann mit Hilfe der Workspaces und Exports organisiert und strukturiert werden. Die Workspaces und Exports enthalten alle relevanten Daten (Messwerte, Parameter, Grenzwerte, Strukturobjekte) der einzelnen Tätigkeit. Workspaces werden im internen Datenspeicher im Verzeichnis WORKSPACES gespeichert, während Exports im Verzeichnis EXPORTS gespeichert werden. Export Dateien können von Metrel-Anwendungen, die auf anderen Geräten laufen, gelesen werden. Exports sind geeignet für die Erstellung von Backups wichtiger Arbeiten. Um mit dem Messgerät zu arbeiten, muss zuerst ein Export aus der Liste der Exports importiert und in einen Workspace umgewandelt werden. Um als Export Datei gespeichert zu werden, muss sie zuerst aus der Liste der Workspaces exportiert und in einen Export umgewandelt werden.

4.8.2 Hauptmenü Workspace Manager

Im Workspace Manager werden Workspaces und Exports in zwei getrennten Listen angezeigt.

Abbildung 4.11: Menü Workspace Manager

WORKSPACES:	Liste Workspaces
■₩●	Zeigt eine Liste der Exporte.
+	Fügt einen neuen Workspace hinzu.
	Für weitere Informationen siehe Kapitel 4.8.5 Einen neuen Workspace hinzufügen.
EXPORTS:	Liste Exports
■ ₩●	Zeigt eine Liste der Workspaces.
444	Öffnet Optionen in der Menüsteuerung / erweitert Spalten.

4.8.3 Arbeiten mit Workspaces

Im Messgerät kann immer nur ein Workspace zur selben Zeit geöffnet sein. Der im Workspace Manager ausgewählte Workspace wird im Memory Organizer geöffnet.

Abbildung 4.12: Menü Workspace

•	Markiert den geöffneten Workspace im Memory Organizer. Öffnet den ausgewählte Workspace im Memory Organizer. Für weitere Informationen siehe Kapitel 4.8.6 Einen Workspace öffnen .
×	Löscht den ausgewählten Workspace. Für weitere Informationen siehe Kapitel 4.8.7 Einen Workspace / Export löschen .
+	Fügt einen neuen Workspace hinzu. Für weitere Informationen siehe Kapitel 4.8.5 Einen neuen Workspace hinzufügen. .
	Exportiert einen Workspace zu einem Export. Für weitere Informationen siehe Kapitel 4.8.9 Einen Workspace exportieren .
444	Öffnet Optionen in der Menüsteuerung / erweitert Spalten.

4.8.4 Arbeiten mit Exports

Abbildung 4.13: Menü Workspace Manager Exports

×	Löscht den ausgewählten Export.
	Für weitere Informationen siehe Kapitel 4.8.7 Einen Workspace / Export löschen.
	Importiert einen neuen Workspace von Export.
	Für weitere Informationen siehe Kapitel 4.8.8 Einen Workspace importieren.
444	Öffnet Optionen in der Menüsteuerung / erweitert Spalten.

4.8.5 Einen neuen Workspace hinzufügen.

Vorgehensweise

	Workspace Manager 4000000000000000000000000000000000000	Neue Workspaces können aus dem Workspace Manager Bildschirm hinzugefügt werden.
2	+	Neuen Workspace hinzufügen.
		 Nach der Auswahl des neuen Workspace wird eine Tastatur zur Eingabe des Namens des neuen Workspace angezeigt.
3	Workspace Manager 4 WORKSPACES: • Grand hotel Union * • Hotel Cubo •	1 Nach Eingabe der Bestätigung wird der neue Workspace im Workspace Manager Hauptmenü hinzugefügt.

4.8.6 Einen Workspace öffnen

Vorgehensweise

1	🖆 Workspace Manager	¢ζ 08:12	Der Workspace kann aus einer Liste im
	WORKSPACES:	•	Workspace Manager-Bildschirm
	Grand hotel Union	×	ausgewahlt werden.
	• Hotel Cubo		
2	•		Öffnet einen Workspace im Workspace Manager.
	Substance Manager	¢۲	Der geöffnete Workspace ist mit einem
	WORKSPACES:	•	blauen Punkt markiert. Der zuvor im
	Grand hotel Union	×	wird automatisch geschlossen.
	Hotel Cubo		-
		•••	

4.8.7 Einen Workspace / Export löschen

4.8.8 Einen Workspace importieren

1	 Workspace Manager EXPORTS: Grand hotel Union Hotel Cubo Hotel Sion Grand hotel Toplice 	06:19	Wählen Sie eine Export-Datei die aus der Workspace Manager Export-Liste importiert werden.
2			Import.
	 Workspace Manager EXPORTS: Grand hot Import to workspace? Hotel Cub Grand hotel Toplice Hotel Slor YES NO Grand hotel Toplice 	06:20	Vor dem Importieren der ausgewählten Export Datei, wird der Benutzer zur Bestätigung aufgefordert.
3	Workspace Manager WorkSPACES:	00:02 ∎⇔●	Datei importierte Export Datei ist zu der Liste der Workspaces hinzugefügt.
	Grand hotel Union Hotel Cubo Hotel Slon Grand hotel Toplice	+	Hinweis: Falls bereits ein Workspace mit dem gleichen Namen in der Liste eingetragen ist, wird der Name des importierten Workspace wie folgt geändert: Name_001, Name_002, Name_003, …).

4.8.9 Einen Workspace exportieren

	Workspace Manager K VORKSPACES: Grand hotel Union Hotel Cubo Hotel Slon Grand hotel Toplice	■ 03:50 ● ★ ● ●	Wählen Sie einen Workspace von Workspace-Manager-Liste zu der eine Export-Datei exportiert werden soll.
2			Export.
₩	 Workspace Manager WORKSPACES: Gran Hote Do you wish to export workspace? Hote YES NO Grand hotel Toplice 	06:22	Vor dem Exportieren des ausgewählten Workspace wird der Benutzer zur Bestätigung aufgefordert.
3 ▲	 Workspace Manager WORKSPACES: Grand Workspace exported to folder Hotel C Grand hotel Toplice_001 Hotel E OK Grand hotel Toplice Workspace Manager Workspace Manager XPORTS: Grand hotel Union Hotel Slon Grand hotel Toplice 	06:22 * * * * * * * * * * * * * * * * * *	Der Workspace ist exportiert zur Export Datei und ist zu der Liste der Exports hinzugefügt. Hinweis: Falls bereits eine Export Datei mit dem gleichen Namen in der Liste eingetragen ist, wird der Name der exportierten Export Datei wie folgt geändert: Name_001, Name_002, Name_003,).
E)	Grand hotel Toplice Workspace Manager PORTS: Grand hotel Union Hotel Cubo Hotel Sion Grand hotel Toplice Grand hotel Toplice_001	 111 06:37 ↓ ↓	wird der Name der exportierten Exp wie folgt geändert: Name_001, Nam Name_003, …).

5 Memory Organizer

Der Memory Organizer ist ein Tool zum Speichern und Arbeiten mit Testdaten.

5.1 Menü Memory Organizer

Die Daten sind in einer Baumstruktur mit Strukturobjekten und Messwerten organisiert. Das EurotestXC Messgerät verfügt über eine mehrstufige Struktur. Die Hierarchie der Strukturobjekte im Baum ist in **Abbildung 5.1** dargestellt.

Abbildung 5.1: Baumstruktur und ihre Hierarchie

Abbildung 5.2: Beispiel für eine Baum Menü

5.1.1 Messung und Bewertungen

Jede Messung hat:

- eine Bewertung (bestanden, nicht bestanden, keine Bewertung)
- einen Namen
- Ergebnisse
- Grenzwerte und Parameter

Eine Messung kann eine Einzelprüfung oder eine automatische Prüfung sein. Für weitere Informationen siehe Kapitel 7 *Prüfungen und Messungen* und 8 *Auto Test*.

Bewertung der Einzelprüfungen:

•	Einzelprüfung bestanden, abgeschlossen mit Prüfergebnis

- Einzelprüfung abgeschlossen mit Prüfergebnis ohne Bewertung
- O leer, Einzelprüfung ohne Prüfergebnis

Bewertungen der automatischen Prüfungen:

- mindestens eine Einzelprüfung im Auto-Test nicht bestanden
- mindestens eine Einzelprüfung wurde im Auto-Test durchgeführt, und es gab keine anderen bestanden oder nicht bestanden Einzeltests.
- O leerer Auto-Test mit leerer Einzelprüfung

5.1.2 Strukturobjekte

Jedes Strukturobjekt hat:

- ein Symbol
- einen Namen und
- Parameter.

Optional:

- eine Anzeige der Bewertung der Messungen unter dem Strukturobjekt
- einen Kommentar oder eine Datei angehängt

Abbildung 5.3: Strukturobjekt im Baum-Menü

5.1.2.1 Anzeige der Bewertung der Messung unter dem Strukturobjekt

Die Gesamtbewertung der Messungen unter jedem Strukturelement/ Unterelement kann ohne Erweiterung des Menüs angesehen werden. Diese Funktion ist für eine schnelle Auswertung der Test Bewertung und als Orientierung für die Messungen hilfreich.

Object	Ein oder mehrere Messergebnisse des ausgewählten Strukturobjekts sind nicht bestanden. Nicht alle Messungen des ausgewählten Strukturobjekts wurden durchgeführt.	Memory Organizer Node Object Dist. Board Voltage R iso R low	CB:39 DB:54 111
℃ • Object	Alle Messungen des ausgewählten Strukturobjekts sind abgeschlossen, aber eine oder mehrere Messungen sind fehlgeschlagen.	Memory Organizer Memory Organizer Node Object Dist. Board Voltage R iso R low	08:56 08:39 08:54 08:56 < (()

Hinweis:

Es gibt keine Zustandsanzeige, wenn alle Messergebnisse in jedem Strukturelement / Unterelement durchgeführt sind oder wenn es leere Strukturelemente / Unterelemente (ohne Messung) gibt.

5.1.3 Arbeiten mit dem Baum Menü

Im Memory Organizer können mit Hilfe der Menüsteuerung, auf der rechten Seite des Displays, verschiedene Aktionen ausgeführt werden. Die möglichen Aktionen sind abhängig vom ausgewählten Element.

5.1.3.1 Arbeiten mit Messwerten (abgeschlossene oder leere Messungen)

Abbildung 5.4: Eine Messung im Baum-Menü ist ausgewählt

	Kapitel 6.1.8 Abgerufene Einzelprüfung Ergebnis-Bildschirm.
	Startet eine neue Messung.
	Das Messgerät wechselt in den Startbildschirm für die Messungen. Für weitere Informationen siehe Kapitel 6.1.3 Einzelprüfungen Startbildschirm .
20	Klont die Messung.
	Die ausgewählte Messung kann als leere Messung im gleichen Strukturobjekt kopiert werden. Für weitere Informationen siehe Kapitel 5.1.3.7 Eine Messung klonen .
On I	Kopieren & Einfügen einer Messung.
	Die ausgewählte Messung kann kopiert und als leere Messung an jeden beliebigen Ort im Strukturbaum eingefügt werden. Mehrfaches "Einfügen" ist möglich. Für weitere Informationen siehe Kapitel 5.1.3.10 Eine Messung Kopieren & Einfügen .
	Fügt eine neue Messung hinzu.
	Das Messgerät wechselt in das Menü Messungen hinzufügen. Für weitere Informationen siehe Kapitel 5.1.3.5 Eine neue Messung hinzufügen .
	Löscht eine Messung
	Die ausgewählte Messung kann gelöscht werden. Vor dem Löschen wird der Benutzer zur Bestätigung aufgefordert. Für weitere Informationen siehe Kapitel 5.1.3.12 Eine Messung löschen .

5.1.3.2 Arbeiten mit Strukturobjekten

Zuerst muss das Strukturelement ausgewählt werden.

Abbildung 5.5: Ein Strukturobjekt im Baum-Menü ist ausgewählt

Startet eine neue Messung.
Zuerst muss die Art der Messung (Einzelprüfung oder Auto-Test) ausgewählt werden. Nach der entsprechenden Auswahl wechselt der Bildschirm in die die Anzeige für Einzelprüfung oder Auto-Test. Siehe Kapitel 6.1 Auswahl- Modus .
Speichert die Messung (Messwerte).
Speichern der Messung im ausgewählten Strukturobjekt.
Anzeigen / Bearbeiten der Parameter und Anhänge.
Parameter und Anhänge des Strukturobjekts können angezeigt oder bearbeitet

 Für weitere Informationen siehe Kapitel 5.1.3.3 Anzeigen / bearbeiten der Parameter und Anhänge eines Strukturobjekts. Fügt eine neue Messung hinzu. Das Messgerät wechselt in das Menü für das Hinzufügen einer neuen Messung in der Struktur. Für weitere Informationen siehe Kapitel 5.1.3.5 Eine neue Messung hinzufügen. Fügt ein neues Strukturobjekt hinzu Ein neues Strukturobjekt kann hinzugefügt werden. Für weitere Informationen siehe Kapitel 5.1.3.4 Ein neues Strukturobjekt hinzufügen. Anhänge. Name und Link des Anhangs werden angezeigt. Klont ein Strukturobjekt. Das ausgewählte Strukturobjekt kann in der gleichen Ebene im Strukturbaum (geklont) kopiert werden. Für weitere Informationen siehe Kapitel 5.1.3.6 Ein Strukturobjekt klonen. Kopieren & Einfügen eines Strukturobjekts. Das ausgewählte Strukturobjekt kann kopiert und an jeden beliebigen Ort im Strukturbaum eingefügt werden Mehrfaches "Einfügen" ist möglich. Für weitere Informationen siehe Kapitel 5.1.3.8 Ein Strukturobjekt Kopieren & Einfügen. Löscht ein Strukturobjekt. Das ausgewählte Strukturobjekt und Unterelemente können gelöscht werden. Vor dem Löschen wird der Benutzer zur Bestätigung aufgefordert. Für weitere Informationen siehe Kapitel 5.1.3.11 Ein Strukturobjekt löschen. Winbenennen eines Strukturobjekts. Das ausgewählte Strukturobjekts. 		werden.
 Fügt eine neue Messung hinzu. Das Messgerät wechselt in das Menü für das Hinzufügen einer neuen Messung in der Struktur. Für weitere Informationen siehe Kapitel 5.1.3.5 Eine neue Messung hinzufügen. Fügt ein neues Strukturobjekt hinzu Ein neues Strukturobjekt kann hinzugefügt werden. Für weitere Informationen siehe Kapitel 5.1.3.4 Ein neues Strukturobjekt hinzufügen. Anhänge. Anne und Link des Anhangs werden angezeigt. Klont ein Strukturobjekt. Das ausgewählte Strukturobjekt kann in der gleichen Ebene im Strukturbaum (geklont) kopiert werden. Für weitere Informationen siehe Kapitel 5.1.3.6 Ein Strukturobjekt klonen. Kopieren & Einfügen eines Strukturobjekts. Das ausgewählte Strukturobjekt kann kopiert und an jeden beliebigen Ort im Strukturbaum eingefügt werden Mehrfaches "Einfügen" ist möglich. Für weitere Informationen siehe Kapitel 5.1.3.8 Ein Strukturobjekt Kopieren & Einfügen. Löscht ein Strukturobjekt. Das ausgewählte Strukturobjekt und Unterelemente können gelöscht werden. Vor dem Löschen wird der Benutzer zur Bestätigung aufgefordert. Für weitere Informationen siehe Kapitel 5.1.3.11 Ein Strukturobjekt löschen. Umbenennen eines Strukturobjekts. Das ausgewählte Strukturobjekts. 		Für weitere Informationen siehe Kapitel 5.1.3.3 Anzeigen / bearbeiten der Parameter und Anhänge eines Strukturobjekts.
 Das Messgerät wechselt in das Menü für das Hinzufügen einer neuen Messung in der Struktur. Für weitere Informationen siehe Kapitel 5.1.3.5 Eine neue Messung hinzufügen. Fügt ein neues Strukturobjekt hinzu Ein neues Strukturobjekt kann hinzugefügt werden. Für weitere Informationen siehe Kapitel 5.1.3.4 Ein neues Strukturobjekt hinzufügen. Anhänge. Anme und Link des Anhangs werden angezeigt. Klont ein Strukturobjekt. Das ausgewählte Strukturobjekt kann in der gleichen Ebene im Strukturbaum (geklont) kopiert werden. Für weitere Informationen siehe Kapitel 5.1.3.6 Ein Strukturobjekt klonen. Kopieren & Einfügen eines Strukturobjekts. Das ausgewählte Strukturobjekt kann kopiert und an jeden beliebigen Ort im Strukturbaum eingefügt werden Mehrfaches "Einfügen" ist möglich. Für weitere Informationen siehe Kapitel 5.1.3.8 Ein Strukturobjekt Kopieren & Einfügen. Löscht ein Strukturobjekt. Das ausgewählte Strukturobjekt und Unterelemente können gelöscht werden. Vor dem Löschen wird der Benutzer zur Bestätigung aufgefordert. Für weitere Informationen siehe Kapitel 5.1.3.11 Ein Strukturobjekt löschen. Umbenennen eines Strukturobjekts. Das ausgewählte Strukturobjekts. 		Fügt eine neue Messung hinzu.
 Fügt ein neues Strukturobjekt hinzu Ein neues Strukturobjekt kann hinzugefügt werden. Für weitere Informationen siehe Kapitel 5.1.3.4 Ein neues Strukturobjekt hinzufügen. Anhänge. Name und Link des Anhangs werden angezeigt. Klont ein Strukturobjekt. Das ausgewählte Strukturobjekt kann in der gleichen Ebene im Strukturbaum (geklont) kopiert werden. Für weitere Informationen siehe Kapitel 5.1.3.6 Ein Strukturobjekt klonen. Kopieren & Einfügen eines Strukturobjekts. Das ausgewählte Strukturobjekt kann kopiert und an jeden beliebigen Ort im Strukturbaum eingefügt werden Mehrfaches "Einfügen" ist möglich. Für weitere Informationen siehe Kapitel 5.1.3.8 Ein Strukturobjekt Kopieren & Einfügen. Löscht ein Strukturobjekt. Das ausgewählte Strukturobjekt und Unterelemente können gelöscht werden. Vor dem Löschen wird der Benutzer zur Bestätigung aufgefordert. Für weitere Informationen siehe Kapitel 5.1.3.11 Ein Strukturobjekt löschen. Umbenennen eines Strukturobjekts. Das ausgewählte Strukturobjekts. 		Das Messgerät wechselt in das Menü für das Hinzufügen einer neuen Messung in der Struktur. Für weitere Informationen siehe Kapitel 5.1.3.5 Eine neue Messung hinzufügen.
 Ein neues Strukturobjekt kann hinzugefügt werden. Für weitere Informationen siehe Kapitel 5.1.3.4 Ein neues Strukturobjekt hinzufügen. Anhänge. Name und Link des Anhangs werden angezeigt. Klont ein Strukturobjekt. Das ausgewählte Strukturobjekt kann in der gleichen Ebene im Strukturbaum (geklont) kopiert werden. Für weitere Informationen siehe Kapitel 5.1.3.6 Ein Strukturobjekt klonen. Kopieren & Einfügen eines Strukturobjekts. Das ausgewählte Strukturobjekt kann kopiert und an jeden beliebigen Ort im Strukturbaum eingefügt werden Mehrfaches "Einfügen" ist möglich. Für weitere Informationen siehe Kapitel 5.1.3.8 Ein Strukturobjekt Kopieren & Einfügen. Löscht ein Strukturobjekt. Das ausgewählte Strukturobjekt und Unterelemente können gelöscht werden. Vor dem Löschen wird der Benutzer zur Bestätigung aufgefordert. Für weitere Informationen siehe Kapitel 5.1.3.11 Ein Strukturobjekt löschen. Umbenennen eines Strukturobjekts. Das ausgewählte Strukturobjekts. 		Fügt ein neues Strukturobjekt hinzu
 Anhänge. Name und Link des Anhangs werden angezeigt. Klont ein Strukturobjekt. Das ausgewählte Strukturobjekt kann in der gleichen Ebene im Strukturbaum (geklont) kopiert werden. Für weitere Informationen siehe Kapitel 5.1.3.6 Ein Strukturobjekt klonen. Kopieren & Einfügen eines Strukturobjekts. Das ausgewählte Strukturobjekt kann kopiert und an jeden beliebigen Ort im Strukturbaum eingefügt werden Mehrfaches "Einfügen" ist möglich. Für weitere Informationen siehe Kapitel 5.1.3.8 Ein Strukturobjekt Kopieren & Einfügen. Löscht ein Strukturobjekt. Das ausgewählte Strukturobjekt und Unterelemente können gelöscht werden. Vor dem Löschen wird der Benutzer zur Bestätigung aufgefordert. Für weitere Informationen siehe Kapitel 5.1.3.11 Ein Strukturobjekt löschen. Umbenennen eines Strukturobjekts. Das ausgewählte Strukturobjekts. 		Ein neues Strukturobjekt kann hinzugefügt werden. Für weitere Informationen siehe Kapitel 5.1.3.4 Ein neues Strukturobjekt hinzufügen .
 Name und Link des Anhangs werden angezeigt. Klont ein Strukturobjekt. Das ausgewählte Strukturobjekt kann in der gleichen Ebene im Strukturbaum (geklont) kopiert werden. Für weitere Informationen siehe Kapitel 5.1.3.6 Ein Strukturobjekt klonen. Kopieren & Einfügen eines Strukturobjekts. Das ausgewählte Strukturobjekt kann kopiert und an jeden beliebigen Ort im Strukturbaum eingefügt werden Mehrfaches "Einfügen" ist möglich. Für weitere Informationen siehe Kapitel 5.1.3.8 Ein Strukturobjekt Kopieren & Einfügen. Löscht ein Strukturobjekt. Das ausgewählte Strukturobjekt und Unterelemente können gelöscht werden. Vor dem Löschen wird der Benutzer zur Bestätigung aufgefordert. Für weitere Informationen siehe Kapitel 5.1.3.11 Ein Strukturobjekt löschen. Umbenennen eines Strukturobjekts. Das ausgewählte Strukturelement kann mittels Tastatur umbenannt werden. Für weitere Informationen siehe Kapitel 5.1.3.13 Umbenennen eines Strukturobjekts. 	P	Anhänge.
 Klont ein Strukturobjekt. Das ausgewählte Strukturobjekt kann in der gleichen Ebene im Strukturbaum (geklont) kopiert werden. Für weitere Informationen siehe Kapitel 5.1.3.6 Ein Strukturobjekt klonen. Kopieren & Einfügen eines Strukturobjekts. Das ausgewählte Strukturobjekt kann kopiert und an jeden beliebigen Ort im Strukturbaum eingefügt werden Mehrfaches "Einfügen" ist möglich. Für weitere Informationen siehe Kapitel 5.1.3.8 Ein Strukturobjekt Kopieren & Einfügen. Löscht ein Strukturobjekt. Das ausgewählte Strukturobjekt und Unterelemente können gelöscht werden. Vor dem Löschen wird der Benutzer zur Bestätigung aufgefordert. Für weitere Informationen siehe Kapitel 5.1.3.11 Ein Strukturobjekt löschen. Umbenennen eines Strukturobjekts. Das ausgewählte Strukturobjekts. 		Name und Link des Anhangs werden angezeigt.
 Das ausgewählte Strukturobjekt kann in der gleichen Ebene im Strukturbaum (geklont) kopiert werden. Für weitere Informationen siehe Kapitel 5.1.3.6 Ein Strukturobjekt klonen. Kopieren & Einfügen eines Strukturobjekts. Das ausgewählte Strukturobjekt kann kopiert und an jeden beliebigen Ort im Strukturbaum eingefügt werden Mehrfaches "Einfügen" ist möglich. Für weitere Informationen siehe Kapitel 5.1.3.8 Ein Strukturobjekt Kopieren & Einfügen. Löscht ein Strukturobjekt. Das ausgewählte Strukturobjekt und Unterelemente können gelöscht werden. Vor dem Löschen wird der Benutzer zur Bestätigung aufgefordert. Für weitere Informationen siehe Kapitel 5.1.3.11 Ein Strukturobjekt löschen. Umbenennen eines Strukturobjekts. Das ausgewählte Strukturobjekts. 	3	Klont ein Strukturobjekt.
 Kopieren & Einfügen eines Strukturobjekts. Das ausgewählte Strukturobjekt kann kopiert und an jeden beliebigen Ort im Strukturbaum eingefügt werden Mehrfaches "Einfügen" ist möglich. Für weitere Informationen siehe Kapitel <i>5.1.3.8 Ein Strukturobjekt Kopieren & Einfügen</i>. Löscht ein Strukturobjekt. Das ausgewählte Strukturobjekt und Unterelemente können gelöscht werden. Vor dem Löschen wird der Benutzer zur Bestätigung aufgefordert. Für weitere Informationen siehe Kapitel <i>5.1.3.11 Ein Strukturobjekt löschen</i>. Imbenennen eines Strukturobjekts. Das ausgewählte Strukturobjekts. Das ausgewählte Strukturobjekts. 	V	Das ausgewählte Strukturobjekt kann in der gleichen Ebene im Strukturbaum (geklont) kopiert werden. Für weitere Informationen siehe Kapitel 5.1.3.6 Ein Strukturobjekt klonen .
 Das ausgewählte Strukturobjekt kann kopiert und an jeden beliebigen Ort im Strukturbaum eingefügt werden Mehrfaches "Einfügen" ist möglich. Für weitere Informationen siehe Kapitel 5.1.3.8 Ein Strukturobjekt Kopieren & Einfügen. Löscht ein Strukturobjekt. Das ausgewählte Strukturobjekt und Unterelemente können gelöscht werden. Vor dem Löschen wird der Benutzer zur Bestätigung aufgefordert. Für weitere Informationen siehe Kapitel 5.1.3.11 Ein Strukturobjekt löschen. Umbenennen eines Strukturobjekts. Das ausgewählte Strukturelement kann mittels Tastatur umbenannt werden. Für weitere Informationen siehe Kapitel 5.1.3.13 Umbenennen eines Strukturobjekts. 		Kopieren & Einfügen eines Strukturobjekts.
 Löscht ein Strukturobjekt. Das ausgewählte Strukturobjekt und Unterelemente können gelöscht werden. Vor dem Löschen wird der Benutzer zur Bestätigung aufgefordert. Für weitere Informationen siehe Kapitel 5.1.3.11 Ein Strukturobjekt löschen. Umbenennen eines Strukturobjekts. Das ausgewählte Strukturelement kann mittels Tastatur umbenannt werden. Für weitere Informationen siehe Kapitel 5.1.3.13 Umbenennen eines Strukturobjekts. 		Das ausgewählte Strukturobjekt kann kopiert und an jeden beliebigen Ort im Strukturbaum eingefügt werden Mehrfaches "Einfügen" ist möglich. Für weitere Informationen siehe Kapitel 5.1.3.8 Ein Strukturobjekt Kopieren & Einfügen .
 Das ausgewählte Strukturobjekt und Unterelemente können gelöscht werden. Vor dem Löschen wird der Benutzer zur Bestätigung aufgefordert. Für weitere Informationen siehe Kapitel 5.1.3.11 Ein Strukturobjekt löschen. Umbenennen eines Strukturobjekts. Das ausgewählte Strukturelement kann mittels Tastatur umbenannt werden. Für weitere Informationen siehe Kapitel 5.1.3.13 Umbenennen eines Strukturobjekts. 		Löscht ein Strukturobjekt.
Umbenennen eines Strukturobjekts. Das ausgewählte Strukturelement kann mittels Tastatur umbenannt werden. Für weitere Informationen siehe Kapitel 5.1.3.13 Umbenennen eines Strukturobjekts.		Das ausgewählte Strukturobjekt und Unterelemente können gelöscht werden. Vor dem Löschen wird der Benutzer zur Bestätigung aufgefordert. Für weitere Informationen siehe Kapitel 5.1.3.11 Ein Strukturobjekt löschen .
Das ausgewählte Strukturelement kann mittels Tastatur umbenannt werden. Für weitere Informationen siehe Kapitel 5.1.3.13 Umbenennen eines Strukturobjekts.	<u>R</u>	Umbenennen eines Strukturobjekts.
		Das ausgewählte Strukturelement kann mittels Tastatur umbenannt werden. Für weitere Informationen siehe Kapitel 5.1.3.13 Umbenennen eines Strukturobjekts. .
Erweitert die Spalten in der Menüsteuerung.	•••	Erweitert die Spalten in der Menüsteuerung.

🛨 eng

🖆 Earthing system type

TN-C-S

TN-C

5.1.3.3 Anzeigen / bearbeiten der Parameter und Anhänge eines Strukturobjekts

In diesem Menü werden die Parameter und deren Inhalte angezeigt. Um den ausgewählten

Parameter zu bearbeiten tippen Sie darauf oder drücken Sie die Taste, um in das Menü zum Editieren der Parameter zu gelangen.

Vorgehensweise Wählen Sie das Strukturobjekt aus, das 🗂 Memory Organizer 40 17:39 \bigcirc editiert werden soll. Node Object. Object 02 (F) M 0. 444 Wählen Sie die Parameter in der 2 Menüsteuerung aus. Memory Organizer / Parameters ۶¢ **17:40** Beispiel für eine Baum Menü 3 🕎 Object None (designation) of object Object Description (of object) Location (of object) Data Ð Im Menü Bearbeitung der Parameter (17:30 (4) können die Parameterwerte von einer Drop-Down-Liste ausgewählt, oder mit der Name (designation) of object Tastatur eingegeben werden. Für weitere Object Informationen zur Tastaturbedienung siehe Kapitel 4 Bedienung des Ŷ P ò ŵ Ē Å Ť ú ő Messgeräts. ĸ Ĝ Á Š D Ě Ĥ J shift Z C Ý. Ŕ Ň Ň x

12#

(17:31

②a	Ø		Wählen Sie die Anhänge in der Menüsteuerung aus.
(3)a	→ Memory Organizer / Attachments	(17:40	Anhänge.
Ξu	🕎 Object		Der Name des Anhangs wird angezeigt.
			Das Arbeiten mit Annangen wird im Messgerät nicht unterstützt.
			5

5.1.3.4 Ein neues Strukturobjekt hinzufügen

Dieses Menü ist vorgesehen um ein neues Strukturobjekt im Baum-Menü hinzu zufügen. Ein neues Strukturobjekt kann ausgewählt und im Baum-Menü hinzugefügt werden.

	1 09:44	
	Name Object	
	1 2 3 4 5 6 7 8 9 0 Q W E R T Y U I 0 P A S D F G H J K L shift Z X C V B N M ✓ mg ; . 12# ✓ . 12# ✓	
Зc	parameters:	Die Parameter für das Strukturobjekt können editiert werden.
	▲ Memory Organizer / Parameters (111 10:54)	
	None	
	Name (designation) of Object object	
	Description (of object)	
	Location (of object)	
	Data	
	Source (designation) of object	
	Object	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
4	Add	Fügt das ausgewählte Strukturobjekt im Baum-Menü ein.
	Cancel	Zurück zum Strukturbaum Menü ohne die Änderungen wirksam werden zu lassen.
(5)	S Memory Organizer	Neues Objekt hinzugefügt
	🗉 🚬 Node 📄	
	🕥 Object.	
	• +	
	\$	

5.1.3.5 Eine neue Messung hinzufügen

In diesem Menü können neue leere Messungen angelegt werden und dann im Strukturbaum hinzugefügt werden. Als erstes müssen die Art der Prüfung, die Messung und die Parameter ausgewählt und dann unter dem ausgewählten Strukturobjekt hinzugefügt.

Vorgehensweise Wählen Sie die Ebene in der Struktur, in ſ Memory Organizer 09:35 \bigcirc der Messung hinzugefügt werden soll. Node Object 0. γ 444 Wählen Sie in der Menüsteuerung 2 Hinzufügen. Add new measurement Fügt ein neues Menü Messung hinzu. 3 type Single Tests measurement: R iso params & limits: 500 V, L/N, 2 MΩ Add Cancel Die Art der Prüfung kann aus diesem Зa Single Tests Bereich ausgewählt werden. Auswahl (Einzelprüfungen, Auto Tests) Zum Ändern tippen Sie auf Feld, oder drücken Sie die -Taste neasurement: Die zuletzt hinzugefügte Messung wird 3h R iso standardmäßig angeboten. (11:29 Für die Auswahl einer weiteren Messung Single Tests U ISO **R**200 drücken Sie die -Taste um das Menü Voltage R iso **R** low d p zur Auswahl der Messungen zu öffnen. Uc \mathbf{R}_7 t -RCD Ua RCD t Continuity Zs AUTO **RCD** Auto Zs red 444 3c 500 V, L/N, 2 MΩ

	▲ Parameters	& Limits		∲ር๋██▋ 11:29	Wählen Sie die Parameter aus, und
	Uiso	<	500 V	>	ändern Sie wie oben beschrieben.
	Type Riso	<	L/N	>	Für weitere Informationen siehe Kapitel 6.1.2 Einzelprüfungen Einstellung der
	Limit(Riso)	<	2 MΩ	>	Parameter und Grenzwerte.
4	Add				Fügt die Messung im ausgewählten Strukturobjekt im Baum-Menü ein.
	Cancel				Rückkehr zum vorherigen Menü ohne die Änderungen wirksam werden zu lassen
5	Memory Org Node Comparison Node Rise	janizer t			Speichern der Messung im ausgewählten Strukturobjekt.

5.1.3.6 Ein Strukturobjekt klonen

In diesem Menü können ausgewählte Strukturobjekte auf derselben Ebene der Baumstruktur kopiert (geklont) werden. Geklonte Strukturobjekte haben denselben Namen wie das Original.

Vorgehensweise

5.1.3.7 Eine Messung klonen

Mit dieser Funktion kann eine ausgewählte leere oder abgeschlossene Messung auf der gleichen Ebene im Strukturbaum als leere Messung kopiert (geklont) werden.

Vorgehensweise

5.1.3.8 Ein Strukturobjekt Kopieren & Einfügen

In diesem Menü können ausgewählte Strukturobjekte kopiert und an jede erlaubte Stelle im Strukturbaum eingefügt werden.

Vor	gehensweise	
1	Memory Organizer Node () () () () () () () () () () () () () (14:34 Wählen Sie das Strukturobjekt aus, das kopiert werden soll. Image: Strukturobjekt aus, das kopiert werden soll.
2	State	Wählen Sie die Kopier-Option.
3	Memory Organizer Memory Organizer Node Image: Second state stat	14:36 Wählen Sie die Stelle, an der das Strukturelement kopiert werden soll. Image: Strukturelement kopiert werden soll.
4		Wählen Sie Einfügen in der Menüsteuerung.
5	Paste: Object Include structure parameters Include structure attachments Include sub structures Include sub measurements Paste Cancel	Das Menü Einfügen Strukturobjekt wird angezeigt. Vor dem Kopieren können, die Unterelemente des ausgewählten Strukturobjekts festgelegt werden, die ebenfalls kopiert werden sollen. Für weitere Informationen siehe Kapitel 5.1.3.9 Klonen und Kopieren der Unterelemente eines ausgewählten Strukturobjekts.
6	Paste	Das ausgewählte Strukturobjekt und Unterelemente werden an der ausgewählten Position in der Baumstruktur kopiert (eingefügt).
	Cancel	Zurück zum Strukturbaum Menü ohne die Änderungen wirksam werden zu lassen.

Das neue Strukturobjekt wird angezeigt.

Hinweis

Der Befehl Einfügen kann ein oder mehrere Male ausgeführt werden.

5.1.3.9 Klonen und Kopieren der Unterelemente eines ausgewählten Strukturobjekts

Wenn Strukturobjekt ausgewählt ist um geklont oder kopiert und eingefügt zu werden, müssen die benötigten Unterelemente zusätzlich ausgewählt werden. Folgende Optionen stehen zur Verfügung:

Include structure parameters	Die Parameter des gewählten Strukturobjekts werden mit geklont / kopiert.
Include structure attachments	Die Anhänge des gewählten Strukturobjekts werden mit geklont / kopiert.
Include sub structures	Strukturobjekte in den Unterebenen des gewählten Strukturobjekts werden mit geklont / kopiert.
Include sub measurements	Die Messungen in den gewählten Strukturobjekten und Unterstrukturen werden mit geklont / kopiert.

5.1.3.10 Eine Messung Kopieren & Einfügen

In diesem Menü können ausgewählte Messungen kopiert und an jeder erlaubten Stelle im Strukturbaum eingefügt werden.

Vor	gehensweise		
1	Memory Organizer Memory Organizer Node Object Dist. Board Voltage R iso R iso	14:05 14:07 14:07	Wählen Sie die Messung aus die kopiert werden soll.
2	•		Wählen Sie in der Menüsteuerung Kopieren.
3	Memory Organizer Memory Organizer Object Image: Dist Board Voltage R iso R iso Object	15:22 14:05 14:07 	Wählen Sie den Speicherort, wo Messung sollte eingefügt werden.
4			Wählen Sie in der Menüsteuerung Einfügen.
5	Memory Organizer Memory Organizer Dist. Board Voltage R iso R iso Disc Voltage Voltage	14:05 14:07 	Die neue (leere) Messung wird im ausgewählten Strukturobjekt angezeigt. Hinweis Der Befehl Einfügen kann ein oder mehrere Male ausgeführt werden.

5.1.3.11 Ein Strukturobjekt löschen

In diesem Menü kann ein ausgewähltes Strukturobjekt gelöscht werden.

Vor	gehensweise		
0	Memory Organizer Memory Organizer Node Image: State	 16:11 16:1 16:1 16:1 10:1 10:1<!--</th--><th>Wählen Sie das Strukturobjekt aus, das gelöscht werden soll.</th>	Wählen Sie das Strukturobjekt aus, das gelöscht werden soll.
2	℃ ×		Wählen Sie in der Menüsteuerung Löschen.
3	Are you sure you want to delete? Dist. Board YES NO		Ein Bestätigungsfenster wird angezeigt.
	YES		Das ausgewählte Strukturobjekt und seine Unterelemente werden entfernt.
	NO		Zurück zum Strukturbaum Menü ohne die Änderungen wirksam werden zu lassen.
4	Memory Organizer Memory Organizer Node Image Image <tr< td=""><td> 16:12 <</td><td>Struktur ohne gelöschten Objekt.</td></tr<>	 16:12 <	Struktur ohne gelöschten Objekt.

5.1.3.12 Eine Messung löschen

In diesem Menü kann eine ausgewählte Messung gelöscht werden.

Vor	gehensweise		
٦	Memory Organizer Memory Organizer Node Dist. Board Voltage R iso	16:36 14:05 14:07 	Wählen Sie die Messung aus die gelöscht werden soll.
2	Sector 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2		Wählen Sie in der Menüsteuerung Löschen.
3	Are you sure you want to delete? R iso YES NO		Ein Bestätigungsfenster wird angezeigt.
	YES NO		Zurück zum Strukturbaum Menü ohne die Änderungen wirksam werden zu lassen.
4	Memory Organizer Memory Organizer Node Object Dist. Board Voltage Riso Riso	14:05 14:07	Struktur ohne gelöschte Messung.

5.1.3.13 Umbenennen eines Strukturobjekts.

In diesem Menü kann ein ausgewähltes Strukturobjekt uimbenannt werden.

Vorgehensweise	
Memory Organizer Memory Organizer Node Image: Second state Image: Second state Image: Second state	 16:14 Wählen Sie das Strukturobjekt aus, das umbenannt werden soll.
2	Wählen Sie in der Menüsteuerung Umbenennen.
(3) Name Object 02 1 2 3 4 5 6 7 8 9 ! @ # \$ % & * ? shift _ " ' () - + → eng ; : 12#	 16:14 Die virtuelle Tastatur wird auf dem Bildschirm angezeigt. Geben Sie den neuen Text ein und bestätigen Sie. Für weitere Informationen siehe Kapitel 4.3 Virtuelle Tastatur.
Memory Organizer Memory Organizer Node © Object	 16:14 Strukturobjekt mit dem geänderten Namen.

5.1.3.14 Abruf und Wiederholungsprüfung einer ausgewählten Messsung

Vorg	ehensweise	
1	Memory Organizer 15:13 Node Node Dist. Board Voltage 14:24 Riso 14:46 Riso 15:00	Wählen Sie die Messung aus die abgerufen werden soll.
2	Q	Wählen Sie in der Menüsteuerung Ergebnisse Abrufen.
3 3a	Memory: R iso 15:13 Riso C Riso C Um 525 V Uiso 500 V Limit(Riso) 2 MΩ 25.11.2014 111 14:46:12 111 Uiso 500 V Limit(Riso) 2 MΩ 25.11.2014 111 14:46:12 111 Uiso 500 V Uiso 500 V Uiso 500 V Limit Riso 15:15	Die Messung ist abgerufen. Parameter und Grenzwerte werden angezeigt, können aber nicht editiert werden.
	Limit(Riso)	
4	C	Wählen Sie in der Menüsteuerung Wiederholungsprüfung.
5	• R iso • 15:13 Riso • MΩ Um V • ? Uiso Type Riso 500 V L/N	Wiederholungsprüfung, der Startbildschirm wird angezeigt.

6 Einzelprüfungen

Die Einzelprüfungen können im Hauptmenü **Einzelprüfungen** oder im **Memory Organizer** im Haupt- und in den Untermenüs ausgewählt werden.

6.1 Auswahl- Modus

Im Hauptmenü Einzelprüfungen gibt es vier Modi zur Auswahl von Prüfungen.

Auswahl

Single Tests				
ISO	3W	dU LINE		
R iso	Earth	Voltage Drop		
LOOP	LOOP	LINE		
ZL-PE	Zs	ZL-L,L-N		
Z loop	Zs red	Z line	<u> </u>	
RCD		RCD		
	ACTO			
RCD I	KCD Auto	RCD t	444	

Zuletzt verwendet

Die letzten 9 durchgeführten, unterschiedlichen Einzelprüfungen werden angezeigt.

Single Tests				
U	ISO	CONT		
RCD	LOOP	LINE		
EARTH	OTHER	POWER		
			444	

Gruppen

Die Einzelprüfungen sind in Gruppen gleichartiger Prüfungen eingeteilt.

				Schnellauswahl
Single To	ests	ťI	08:33	Dieser Auswahl-Modus ist der schnellste Weg für die Arbeit mit der Tastatur.
U Voltage	ISO	CONT		Die Gruppen der Einzelprüfungen sind in einer Reihe angezeigt.
			444	
Single To	ests UC RCD Uc	¢.	08:34	Für die ausgewählte Gruppe werden alle Einzelprüfungen angezeigt, sie sind mit den auf / ab Tasten auswählbar.
CONT	RCD Č RCD t	LOOP		
	RCD I RCD I		111	
• • •				Erweitert Bedienfeld / öffnet weitere Optionen.

6.1.1 Einzelprüfung Bildschirmanzeigen

In den Einzelprüfungs-Bildschirmanzeigen werden Messergebnisse, Teilergebnisse, Grenzwerte und Parameter der Messung angezeigt. Neben der Online-Bewertung werden auch Warnungen und andere Informationen angezeigt.

Abbildung 6.1: Aufbau Einzelprüfungs-Bildschirm, beispielsweise von der Isolationswiderstandsmessung

Aufbau Einzelprüfungs-Bildschirm

♪ R iso	í III 10:03	Kopfzeile	
		 ESCAPE-Touch Taste 	
		→ Funktion	
		 Batterie Status 	

6.1.2 Einzelprüfungen Einstellung der Parameter und Grenzwerte

Vorgehensweise

5

Grenzwerte und wird beendet.

6.1.3 Einzelprüfungen Startbildschirm

Abbildung 6.2: Aufbau Einzelprüfungs-Bildschirm, beispielsweise von der Isolationswiderstand kontinuierliche Messung

Auswahl (vor der Prüfung, wurde der Bildschirm im Memory Organizer oder im Hauptmenü Einzelprüfungen geöffnet).

6.1.4 Einzelprüfung Bildschirm während der Prüfung

Abbildung 6.3: Einzelprüfung wird ausgeführt, Beispiel für die kontinuierliche Isolationswiderstand Messung

Bedienmöglichkeiten während der Prüfung

	Stoppt die Einzelprüfungsmessung.
Ř	
Þ	Weiter zu dem nächsten Schritt der Messung (falls die Messung aus mehreren Schritten besteht).
¢	Vorheriger Wert
•	
⇔	Nächster Wert
₽	Bricht die Messung ab und kehrt zurück zum vorherigen Menü.
5	

6.1.5 Einzelprüfung Ergebnis-Bildschirm

Abbildung 6.4: Einzelprüfungs-Bildschirm Ergebnisse, Beispiel für Isolationswiderstandsmessung Ergebnisse

Auswahl (nachdem die Messung abgeschlossen ist)

	Strukturobjekt gespeichert.
?	Öffnet den Hilfe-Bildschirm.
	Öffnet den Bildschirm zum Ändern der Parameter und Grenzwerte.
Uiso 500 V Type Riso L/N Limit(Riso) 2 ΜΩ	Für weitere Informationen siehe Kapitel 6.1.2 Einzelprüfungen Einstellung der Parameter und Grenzwerte.
Riso 10.08 MΩ ✓ lang ein ^{Um 525 v}	Ruft das Steuerkreuz auf, um eine Prüfung oder Messung auszuwählen.
	Erweitert die Spalten in der Menüsteuerung.
(

6.1.6 Bearbeiten von Diagrammen (Oberwellen)

Abbildung 6.5: Beispiele für Ergebnisse Oberwellenmessung

Auswahl für die Bearbeitung von Diagrammen (Startbildschirm oder nach dem die Messung beendet)

Ì₫,	Plot editieren Öffnet Bedienfeld zum Bearbeiten der Diagramme.
仓	Erhöhen des Skalier Faktors für y-Achse.
$\hat{\Gamma}$	Verkleinern des Skalier Faktors für y-Achse.
	Umschalten zwischen U und I graphischer Darstellung, um den Skalierungsfaktor zu einstellen.
1	Beendet die Bearbeitung des Diagramms.

6.1.7 Hilfe Bildschirme

Die Hilfe Bildschirme enthalten Diagramme für den richtigen Anschluss des Messgerätes.

Abbildung 6.6: Beispiele für Hilfe-Bildschirme

Auswahl

Wechsel zum vorherigen / nächsten Hilfe-Bildschirm.

Zurück zum Prüf- / Messmenü

6.1.8 Abgerufene Einzelprüfung Ergebnis-Bildschirm

Abbildung 6.7: Abgerufene Ergebnisse der ausgewählten Messung, Beispiel Isolationswiderstand abgerufene Ergebnisse

Auswahl	
C	Wiederholungsprüfung
	Für weitere Informationen siehe Kapitel 6.1.3 Einzelprüfungen Startbildschirm.
	Öffnet das Menü für die Anzeige der Parameter und Grenzwerte.
Uiso 500 V Type Riso Limit(Riso) 2 MΩ	Für weitere Informationen siehe Kapitel 6.1.2 Einzelprüfungen Einstellung der Parameter und Grenzwerte.
444	Erweitert die Spalten in der Menüsteuerung.

7 Prüfungen und Messungen

Siehe Kapitel **6.1 Auswahl- Modus** für Anleitungen zu den Tasten-Befehlen und der Touch-Screen-Funktionalität.

7.1 Spannung, Frequenz und Phasenfolge

Abbildung 7.1: Menü Spannungsmessung

Prüfparameter / Grenzwerte

Es sind keine Parameter / Grenzwerte eingestellt.

Anschlusspläne

Abbildung 7.2: Anschluss der Dreileiter-Prüfleitung und des optionalen Adapters im Drehstromnetz.

Messverfahren

- Wählen Sie die Funktion **Spannung**.
- Schließen Sie die Prüfleitungen am Messgerät an.
- Schließen Sie die Pr
 üfleitungen am Pr
 üfling an., siehe Abbildung 7.2 und Abbildung 7.3.
- Die Messung startet unmittelbar nach dem dem Aufruf des Menüs.
- Speichern Sie die Ergebnisse (optional).

Abbildung 7.4: Beispiele für Spannungsmessung in einem Ein-Phasen System

Abbildung 7.5: Beispiele für Spannungsmessung in einem Drei-Phasen-System

Testergebnisse / Teilergebnisse

Ein-Phasen System

Uln	Spannung zwischen Phase und Nullleiter	
Ulpe	Spannung zwischen Phase und Schutzleiter	
Unpe	Spannung zwischen Nullleiter und Schutzleiter	
Freq	Frequenz	

Drei-Phasen System

U12	Spannung zwischen den Phasen L1 und L2
U13	U12 Spannung zwischen den Phasen L1 und L3
U23	U12 Spannung zwischen den Phasen L2 und L3
Freq	Frequenz
Feld	 1.2.3 - Korrekter Anschluss – Drehrichtung im Uhrzeigersinn 3.2.1 - Falscher Anschluss – Drehrichtung gegen den Uhrzeigersinn

IT Erdungsanlage (Auswahl der IT-Erdungsanlage erforderlich)

U12	Spannung zwischen den Phasen L1 und L2
U1pe	Spannung zwischen den Phasen L1 und PE
U2pe	Spannung zwischen den Phasen L2 und PE
Freq	Frequenz

7.2 R iso - Isolationswiderstand

Abbildung 7.6: Menü Isolationswiderstandsprüfung

Prüfparameter / Grenzwerte

Uiso	Nennprüfspannung [50 V, 100 V, 250 V, 500 V, 1000 V, 2500 V*]
Typ Riso	Typ der Prüfung [L/PE, L/N, N/PE, L/L] **
Limit (Riso)	Min. Isolationswiderstand [AUS, 0,01 M Ω 100 M Ω]
* Negara strike en sur se 2500 \/ ist sur hei MI 2450 Lucrfühler	

* Nennprüfspannung 2500 V ist nur bei MI 3152H verfügbar.

** Isolationswiederstand ist immer zwischen L/L1 und N/L2 Prüfleitungen gemessen. Ist der Schuko Testkabel oder Commander-Prüfstecker benutzt, dann ist, unabhängig von der Typ Riso Einstellung, nur der Isolationswiederstand zwischen L und N gemessen.

Anschlusspläne

Abbildung 7.7: Anschluss der Dreileiter-Prüfleitung und der Commander-Prüfspitze (UN≤ 1 kV)

Abbildung 7.8: Anschluss der 2,5 kV Prüfleitung ($U_N = 2,5 \text{ kV}$)

Messverfahren

- Wählen Sie die Funktion R iso.
- Trennen Sie die gepr
 üfte Anlage vom Versorgungsnetz und entladen Sie im Bedarfsfall die Isolation.
- Schließen Sie die Prüfleitungen am Messgerät an.
 - Schließen Sie die Prüfleitungen am Prüfling an (siehe **Abbildung 7.7** und **Abbildung 7.8**).

Für die Prüfung mit den Nennprüfspannungen $U_N \le 1000$ V und $U_N = 2500$ V müssen andere Prüfleitungen verwendet werden. Auch andere Prüfanschlüsse sind zu verwenden.

Die Standard Dreileiter-Prüfleitung, Schukostecker mit Prüfkabel oder Stecker / Commander-Prüfspitze können für die Isolationsprüfung mit Nennprüfspannungen ≤ 1000 V verwendet werden. Für den 2500 V Isolationstest muss die Zweileiter 2,5 kV Prüfleitung verwendet werden.

- Starten Sie die Messung. Durch längeres Drücken auf die TEST-Taste oder einen längeren Druck auf "Start Test" auf dem Touch-Screen, startet eine kontinuierliche Messung.
- Stoppen Sie die Messung. Warten Sie, bis der Prüfling vollständig entladen ist.
- Speichern Sie die Ergebnisse (optional).

Abbildung 7.9: Beispiele für Ergebnisse der Isolationswiderstandsmessung

Testergebnisse / Teilergebnisse

Riso	Isolationswiderstand
Um	Aktuelle Prüfspannung

7.3 DAR und PI Diagnose (nur MI 3152H)

DAR (<u>D</u>ielectric <u>A</u>bsorption <u>R</u>ation) ist Verhältnis des Isolationswiderstandswertes gemessen nach 15 Sekunden und nach 1 Minute. Die Prüfgleichspannung ist während der gesamten Dauer der Messung vorhanden.

$$DAR = \frac{R_{ISO}(1 \text{ min})}{R_{ISO}(15 \text{ s})}$$

PI (**P**olarisations Index) ist das Verhältnis des Isolationswiderstandswertes gemessen nach 1 Minute und nach 10 Minuten. Die DC Prüfspannung ist während der gesamten Dauer der Messung vorhanden.

$$PI = \frac{R_{ISO}(10 \text{ min})}{R_{ISO}(1 \text{ min})}$$

Weitere Informationen zu PI und DAR Diagnose finden Sie bei Metrel im Handbuch **Moderne Isolationsprüfung**.

Abbildung 7.10: Menü Diagnose

Prüfparameter / Grenzwerte

Uiso Nennspannung [500 V, 1000 V, 2500 V]

Anschlusspläne

Abbildung 7.11: Anschluss der Dreileiter-Prüfleitung und der Commander-Prüfspitze (UN≤ 1 kV)

Messverfahren

- Wählen Sie die **Diagnose** Funktion.
- Stellen Sie die Prüfparameter / Grenzwerte ein.
- Trennen Sie die gepr
 üfte Anlage vom Versorgungsnetz und entladen Sie im Bedarfsfall die Isolation.
- Schließen Sie die Pr
 üfleitungen am Messger
 ät an.
 - Schließen Sie die Pr
 üfleitungen am Pr
 üfling an, siehe Abbildung 7.11 und Abbildung 7.12.

Für die Prüfung mit den Nennprüfspannungen $U_N \le 1000$ V und $U_N = 2500$ V müssen andere Prüfleitungen verwendet werden. Auch andere Prüfanschlüsse sind zu verwenden.

Die Standard Dreileiter-Prüfleitung, Schukostecker mit Prüfkabel oder Stecker / Commander-Prüfspitze können für die Isolationsprüfung mit Nennprüfspannungen ≤ 1000 V verwendet werden. Für den 2500 V Isolationstest muss die Zweileiter 2,5 kV Prüfleitung verwendet werden.

- Wenn der interne Timer 10 min erreicht hat, wird der PI-Faktor angezeigt und die Messung ist abgeschlossen. Warten Sie, bis der Prüfling vollständig entladen ist.
- arten Sie Nach der Messung bis die zu pr
 üfende Anlage vollst
 ändig entladen ist.
 Speichern Sie die Ergebnisse (optional).

Abbildung 7.13: Beispiele für Ergebnisse des Diagnosetests

Testergebnisse / Teilergebnisse

Riso	Isolationswiderstand
Um	Aktuelle Prüfspannung

R60	Widerstand nach 60 Sekunden
DAR	Dielektrische Absorptionsrate
PI	Polarisationsindex

7.4 Widerstand der Erdverbindung und der Potentialausgleichsverbindungen

Abbildung 7.14: Menü R low Prüfung

Prüfparameter / Grenzwerte

Ausgang	[LN]
Masseverbi	[Rpe, lokal]
ndung	
Limit (R)	Max. Widerstand [AUS, 0,01 20,0 Ω]

Anschlussplan

Abbildung 7.15: Anschluss der Dreileiter-Prüfleitung und des optionalen Verlängerungskabels

Messverfahren

- Wählen Sie die Funktion R low.
- Schließen Sie die Pr
 üfleitungen am Messger
 ät an.
- Kompensieren Sie den Widerstand der Pr
 üfleitungen bei Bedarf, siehe Abschnitt 7.5.1Kompensation des Widerstands der Pr
 üfleitungen.
- Trennen Sie die Anlage vom Versorgungsnetz und entladen Sie im Bedarfsfall die Isolation.
- Starten Sie die Messung.
- Speichern Sie die Ergebnisse (optional).

Abbildung 7.16: Beispiele für Ergebnisse der R low Messung

Prüfergebnisse / Teilergebnisse

R	Widerstand
R+	Ergebnis bei positiver Polarität
R-	Ergebnis bei negativer Polarität

7.5 Durchgang – Kontinuierliche Widerstandsmessung mit niedrigem Strom

Abbildung 7.17: Menü Kontinuierliche Widerstandsmessung

Prüfparameter / Grenzwerte

Ton	[EIN* / AUS]	

Limit(R) Max. Widerstand [AUS, 0.1 Ω ... 20,0 Ω]

* Das Messgerät generiert ein Tonsignal, wenn der Widerstand niedriger als der eingestellte Grenzwert ist.

Anschlusspläne

Abbildung 7.18: Commander-Prüfspitze und der Dreileiter-Prüfleitung Anwendungen

Messverfahren

- Wählen Sie die Funktion Durchgangsprüfung.
- Schließen Sie die Prüfleitungen am Messgerät an.
- Kompensieren Sie den Widerstand der Pr
 üfleitungen bei Bedarf, siehe Abschnitt 7.5.1Kompensation des Widerstands der Pr
 üfleitungen.
- Trennen Sie die Anlage vom Versorgungsnetz und entladen Sie im Bedarfsfall die Isolation.
- Schließen Sie die Prüfleitungen am Prüfling an, siehe Abbildung 7.18.
- Starten Sie die Messung.
- Stoppen Sie die Messung.
- Speichern Sie die Ergebnisse (optional).

Abbildung 7.19: Beispiele für Ergebnisse der Durchgangswiderstandsmessung

Prüfergebnisse / Teilergebnisse

R Widerstand

7.5.1 Kompensation des Widerstands der Prüfleitungen

Dieses Kapitel beschreibt, wie die Prüfleitungswiderstände bei beiden Durchgangsfunktionen, **R low** und **Durchgang**, kompensiert werden. Eine Kompensation ist notwendig, um den Einfluss des Widerstands der Prüfleitungen und der Innenwiderstände des Geräts auf den gemessenen Widerstand zu eliminieren. Daher ist die Leitungskompensation eine sehr wichtige Funktion, um ein korrektes Ergebnis zu erhalten.

Nach erfolgreicher Durchführung der Kompensation wird das Symbol 🖾 angezeigt.

Schaltungen zum Kompensieren des Widerstands der Prüfleitungen

Abbildung 7.20: Kurzgeschlossene Prüfleitungen

Verfahren zur Kompensation des Widerstands der Prüfleitungen

- Wählen Sie die Funktion **R low** oder **Durchgang**.
- Schließen Sie das Pr
 üfkabel am Messger
 ät an und schließen Sie die Pr
 üfleitungen miteinander kurz, siehe Abbildung 7.20.
- Tippen Sie auf die Taste , um den Leitungswiderstände zu kompensieren.

Abbildung 7.21: Ergebnisse mit alten und neuen Kalibrierungswerten

7.6 Prüfen von RCDs

Zur Überprüfung des (der) RCD(s) in RCD-geschützten Anlagen sind verschiedene Prüfungen und Messungen erforderlich. Die Messungen beruhen auf der Norm EN 61557-6. Folgende Messungen und Prüfungen (Unterfunktionen) können durchgeführt werden:

- Berührungsspannung,
- Auslösezeit,
- Auslösestrom und
- RCD-Auto-Test.

Abbildung 7.22: RCD Menüs

Prüfparameter / Grenzwerte

l dN	Nenn-Fehlerstromempfindlichkeit des RCD IAN [10 mA, 30 mA, 100 mA,
	300 mA, 500 mA, 1000 mA].
Тур	RCD Typ [AC, A, F, B*, B+*]
Use	RCD / PRCD Auswahl [fest, PRCD, PRCD-S, PRCD-K]
Empfindlichkeit	Charakteristik [G, S]
X IdN	Multiplikationsfaktor für den Prüfstrom [0.5, 1, 2, 5]
Phase	Anfangspolarität [+, -]
Limit Uc	Konventioneller Grenzwert für die Berührungsspannung [25 V, 50 V].

*nur MI 3152.

Anschlussplan

Abbildung 7.23: Anschluss des Commander-Prüfsteckers und die Dreileiter-Prüfleitung

7.6.1 RCD Uc – Berührungsspannung

Messverfahren

- Wählen Sie die Funktion RCD Uc.
- Stellen Sie die Prüfparameter / Grenzwerte ein.
- Schließen Sie die Pr
 üfleitungen am Messger
 ät an.
- Schließen Sie die Prüfleitungen am Prüfling an, siehe Abbildung 7.23.
- Starten Sie die Messung.
- Speichern Sie die Ergebnisse (optional).

Das Ergebnis der Berührungsspannung bezieht sich auf den Nennfehlerstrom des RCD und wird mit einem geeigneten Faktor multipliziert (in Abhängigkeit vom RCD-Typ und der Art des Prüfstroms). Um eine negative Ergebnistoleranz zu vermeiden, kommt der Faktor 1,05 zur Anwendung. Siehe **Tabelle 7.1** für finden Sie detaillierte Berechnungsfaktoren für die Berührungsspannung.

RCD Typ		Berührungsspannung Uc proportional zu	Nenn I $_{\Delta N}$	Hinweise
AC	G	1,05×I _{∆N}	beliebig	
AC	S	$2 \times 1,05 \times I_{\Delta N}$		
A , F	G	1,4×1,05×I _{∆N}	≥ 30 mA	
A , F	S	$2 \times 1,4 \times 1,05 \times I_{\Delta N}$		
A, F	G	2×1,05×I _{∆N}	< 30 mA	
A, F	S	2×2×1,05×I _{∆N}		
B, B+	G	$2 \times 1,05 \times I_{\Delta N}$	beliebig	*nur MI 3150
B, B+	S	$2 \times 2 \times 1,05 \times I_{\Delta N}$		

Tabelle 7.1: Beziehung zwischen Uc und $I_{\Delta N}$

Fehlerschleifenwiderstand ist indikativ und von Uc Ergebnis berechnet (ohne zusätzliche Proportionalitätsfaktoren) nach: $R_L = \frac{U_C}{I_{AN}}$.

Abbildung 7.24: Beispiel für die Ergebnisse einer Berührungsspannungsmessung

Testergebnisse / Teilergebnisse

UcBerührungsspannungRIberechneter Fehlerschleifenwiderstand

7.6.2 RCD t – Auslösezeit

Messverfahren

- Wählen Sie die Funktion RCD t.
- Schließen Sie die Pr
 üfleitungen am Messger
 ät an.
- Schließen Sie die Prüfleitungen am Prüfling an, siehe Abbildung 7.23.
- Starten Sie die Messung.
- Speichern Sie die Ergebnisse (optional).

🗢 RCD t		۲_ ا	14:48	♣ RCD t		۲	14:39
4	0 /	1	+	13		×	
t ΔN	J.4 ms	1.1	B	t ΔN	JUU ms	;	
Uc 1.2 v				Uc 1.2 V			
l dN × ldN	100 mA 1		?	l dN × ldN	100 mA 1		?
Type Use	(*) AC fixed	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Type Use	(+) AC fixed	€ 230 € 0 230 € 0 9	444

Abbildung 7.25: Beispiel für die Messergebnisse der Auslösezeit

Testergebnisse / Teilergebnisse

$t \Delta N$	Auslösezeit
Uc	Berührungsspannung bei Nenn I _{∆N}

7.6.3 RCD I – Auslösestrom

Das Messgerät erhöht den Prüfstrom in kleinen Schritten innerhalb des entsprechenden Bereichs wie folgt:

	Anstieg	sbereich	Wollonform	Hinweise	
кортур	Startwert	Endwert	weilenionn		
AC	0,2×I _{∆N}	$1,1 \times I_{\Delta N}$	Sinus		
A, F (I _{∆N} ≥ 30 mA)	0,2×I _{∆N}	1,5×I _{∆N}	Copulat	Alle Modelle	
A, F (I _{∆N} = 10 mA)	0,2×I _{∆N}	2,2×I _{∆N}	Gepuist		
B, B+	0,2×I _{∆N}	2,2×I _{∆N}	DC	*nur MI 3152.	

Der maximale Prüfstrom ist I_{Δ} (Auslösestrom) oder der Endwert für den Fall, dass das RCD nicht auslöste.

Messverfahren

- Wählen Sie die Funktion RCD I.
- Stellen Sie die Prüfparameter / Grenzwerte ein.
- Schließen Sie die Pr
 üfleitungen am Messger
 ät an.
- Schließen Sie die Pr
 üfleitungen oder den Commander Pr
 üfstecker am Pr
 üfling an, siehe Abbildung 7.23.
- Starten Sie die Messung.
- Speichern Sie die Ergebnisse (optional).

Abbildung 7.26: Beispiel für die Messergebnisse des Auslösestroms

Testergebnisse / Teilergebnisse

IΔ	Auslösestrom
Uc I∆	Berührungsspannung beim Auslösestrom I∆ oder Endwert, falls das RCD nicht auslöste.
t I∆	Auslösezeit bei Auslösestrom I∆

7.7 RCD Auto – RCD Auto Test

Die Funktion RCD-Autotest führt eine vollständige RCD-Prüfung (Auslösezeit bei verschiedenen Fehlerströmen, Auslösestrom und Berührungsspannung) anhand einer Reihe von automatischen Prüfungen durch, die vom Messgerät gesteuert werden.

RCD-Auto-Test Ablauf

R	CD-Auto-Test Schritte	Hinweise
•	Wählen Sie die Funktion RCD Auto.	
•	Stellen Sie die Prüfparameter / Grenzwerte ein.	
•	Schließen Sie die Prüfleitungen am Messgerät an.	
•	Schließen Sie die Prüfleitungen oder den Commander	
	Prüfstecker am Prüfling an, siehe Abbildung 7.23.	
•	Starten Sie die Messung.	Beginn der Prüfung
	Prüfung mit $I_{\Delta N}$, (+) positive Polarität (Schritt 1).	RCD sollte auslösen
•	RCD reaktivieren.	
	Prüfung mit $I_{\Delta N}$, (-) negative Polarität (Schritt 2).	RCD sollte auslösen
•	RCD reaktivieren.	
	Prüfung mit $5 \times I_{\Delta N}$, (+) positive Polarität (Schritt 3).	RCD sollte auslösen
•	RCD reaktivieren.	
	Prüfung mit $5 \times I_{\Delta N}$, (-) negative Polarität (Schritt 4).	RCD sollte auslösen
•	RCD reaktivieren.	
	Prüfung mit $\frac{1}{2} \times I_{\Delta N}$, (+) positive Polarität (Schritt 5).	RCD sollte nicht
		auslösen
	Prüfung mit $\frac{1}{2} \times I_{\Delta N}$, (-) negative Polarität (Schritt 6).	RCD sollte nicht
		auslösen
	Prüfung Auslösestrom, (+) positive Polarität (Schritt 7).	RCD sollte auslösen
•	RCD reaktivieren.	
	Prüfung Auslösestrom, (-) negative Polarität (Schritt 8).	RCD sollte auslösen
•	RCD reaktivieren.	
	Speichern Sie die Ergebnisse (optional).	Ende der Prüfung

Schritt 2

Abbildung 7.27: Einzelschritte im RCD-Auto-Test

Testergebnisse / Teilergebnisse

t I∆N x1, (+)	Schritt 1 Auslösezeit ($I_A = I_{AN}$, (+) positive Polarität)
t I∆N x1, (-)	Schritt 2 Auslösezeit ($I_{A}=I_{AN}$, (-) negative Polarität)
t I∆N x5, (+)	Schritt 3 Auslösezeit ($I_A = I_{AN}$, (+) positive Polarität)
t I∆N x5, (-)	Schritt 4 Auslösezeit ($I_A = I_{AN}$, (-) negative Polarität)
t I∆N x0.5, (+)	Schritt 5 Auslösezeit ($I_A = I_{AN}$, (+) positive Polarität)
t I∆N x0.5, (-)	Schritt 6 Auslösezeit ($I_{A}=I_{AN}$, (-) negative Polarität)
ld (+)	Schritt 7 Auslösezeit (I=IN, (+) positive Polarität)
ld (-)	Schritt 8 Abschaltstrom (180°)
Uc	Berührungsspannung bei Nenn I _{∆N}

7.8 Z loop – Fehlerschleifenimpedanz und unbeeinflusster Fehlerstrom

Abbildung 7.28: Menü Z loop

Prüfparameter / Grenzwerte

Sicherungstyp	Auswahl des Sicherungstyps [gG, NV, B, C, D, K]
Sicherung I	Nennstrom der gewählten Sicherung
Sicherung t	Maximale Auslösezeit der gewählten Sicherung
la (lpsc)	Minimaler Fehlerstrom für die gewählte Sicherung

Die Referenzdaten für die Sicherungen finden Sie im Anhang A.

Anschlussplan

Abbildung 7.29: Anschluss des Commander-Prüfsteckers und der Dreileiter-Prüfleitung

Messverfahren

- Wählen Sie die Z loop Funktion
- Stellen Sie die Prüfparameter / Grenzwerte ein.
- Schließen Sie die Pr
 üfleitungen am Messger
 ät an.
- Schließen Sie die Pr
 üfleitungen oder den Commander Pr
 üfstecker am Pr
 üfling an, siehe Abbildung 7.29.
- Starten Sie die Messung.
- Speichern Sie die Ergebnisse (optional).

Abbildung 7.30: Beispiel für das Ergebnis einer Schleifenimpedanzmessung

Prüfergebnisse / Teilergebnisse

Ζ	Schleifenimpedanz
lpsc	Unbeeinflusster Fehlerstrom
Ulpe	Spannung L-PE
R	Widerstand der Schleifenimpedanz
XL	Blindwiderstand der Schleifenimpedanz

Der unbeeinflusste Fehlerstrom I_{SC} wird aus der gemessenen Impedanz folgendermaßen berechnet:

$$I_{PSC} = \frac{U_N \times k_{SC}}{Z}$$

mit:

Un.....die Nennspannung U_{L-PE} (siehe Tabelle unten),

k_{sc}Korrekturfaktor (Isc Faktor) für I_{PSC} (siehe Kapitel **4.6.4 Einstellungen**).

Un	Eingangsspannungsbereich (L-PE)
110 V	$(93 \text{ V} \le \text{U}_{\text{L-PE}} \le 134 \text{ V})$
230 V	$(185 \text{ V} \le \text{U}_{\text{L-PE}} \le 266 \text{ V})$

7.9 Zs rcd –Fehlerschleifenimpedanz und unbeeinflusster Fehlerstrom im System mit RCD

Die Zs rcd-Messung verhindert ein Auslösen des RCDs in einer RCD-geschützten Anlage.

Abbildung 7.31: Menu Zs rcd

Prüfparameter / Grenzwerte

Sicherungstyp	Auswahl de K]	es Sicherungst	yps [gG, N	V, B, C, D,
Sicherung I	Nennstrom	der gewählten	Siche	rung	
Sicherung t	Maximale A	uslösezeit der	gewäl	nlten S	Sicherung
la (lpsc)	Minimaler Sicherung	Fehlerstrom	für	die	gewählte

Die Referenzdaten für die Sicherungen finden Sie im Anhang A.

Anschlussplan

Abbildung 7.32: Anschluss des Commander-Prüfsteckers und der Dreileiter-Prüfleitung

Messverfahren

- Wählen Sie die Zs rcd Funktion
- Schließen Sie die Pr
 üfleitungen am Messger
 ät an.
- Schließen Sie die Pr
 üfleitungen oder den Commander Pr
 üfstecker am Pr
 üfling an, siehe Abbildung 7.32.
- Starten Sie die Messung.
 - > Speichern Sie die Ergebnisse (optional).

Abbildung 7.33: Beispiele für Ergebnisse der Zs rcd Messung

Prüfergebnisse / Teilergebnisse

Ζ	Schleifenimpedanz
lpsc	Unbeeinflusster Fehlerstrom
Ulpe	Spannung L-PE
R	Widerstand der Schleifenimpedanz
XL	Blindwiderstand der Schleifenimpedanz

Der unbeeinflusste Fehlerstrom I_{SC} wird aus der gemessenen Impedanz folgendermaßen berechnet:

$$I_{PSC} = \frac{U_N \times k_{SC}}{Z}$$

mit:

 U_nNennspannung U_{L-PE} (siehe Tabelle unten),

k_{sc}Korrekturfaktor (Isc Faktor) for I_{PSC} (siehe Kapitel 4.6.4 Einstellungen).

Un	Eingangsspannungsbereich (L-PE)
110 V	$(93 \text{ V} \le \text{U}_{\text{L-PE}} \le 134 \text{ V})$
230 V	$(185 \text{ V} \le \text{U}_{\text{L-PE}} \le 266 \text{ V})$

7.10 Z loop m Ω – Hochpräzise Fehlerschleifenimpedanz und unbeeinflusster Kurzschlussstrom

Abbildung 7.34: Menü Z loop m Ω

Prüfparameter / Grenzwerte

Sicherungstyp	Auswahl des Sicherungstyps [gG, NV, B, C, D, K]	
Sicherung I	Nennstrom der gewählten Sicherung	
Sicherung t	Maximale Auslösezeit der gewählten Sicherung	
la (lpsc) Minimaler Fehlerstrom für die gewählte Sicher		
Die Referenzdaten für die Sicherungen finden Sie im Anhang A.		

Anschlussplan

Abbildung 7.35: Hochpräzise Messung der Schleifenimpedanz - Anschluss des A 1143

Abbildung 7.36: Berührungsspannungsmessung - Anschluss des A 1143

Messverfahren

- Wählen Sie die **Z loop m** Ω Funktion.
- Stellen Sie die Prüfparameter / Grenzwerte ein.
- Schließen Sie die Pr
 üfleitungen am A 1143 Euro Z 290 A-Adapter an und schalten Sie ihn ein.
- Schließen den A1143 Euro Z 290 A-Adapter mit RS232-PS / 2-Kabel an das Messgerät an.
- Schließen Sie die Pr
 üfleitungen am Pr
 üfling an, siehe Abbildung 7.35 und Abbildung 7.36.

Taste.

- Starten Sie die Messung mit
 oder mit der
- Speichern Sie die Ergebnisse (optional).

🗂 Z loop mΩ	18:45	🗂 Z loop mΩ	18:51
z 259 mΩ		z 1217 mΩ 🖌 🖌	
Ipsc 888 A		Ipsc 189 A	
R 255 mΩ XL 42 mΩ Ub 0.0 V Imax 932 A Imin 568 A		R 1216 mΩ XL 49 mΩ Ub 0.0 V Imax 198 A Imin 120 A	
Fuse Type C Fuse I 0.5 A	?	Fuse Type B Z Fuse I 40 A	?
Fuse t 0.035 s Ia(ipse) 5 A Uipe 236 V Freq 50.0 Hz		Fuse t 5 s la(lpsc) 200 A Uipe 235 V Freq 50.0 Hz	444

Abbildung 7.37: Beispiele für Ergebnisse der hochpräzisen Schleifenimpedanzmessung

Prüfergebnisse / Teilergebnisse

Ζ	Schleifenimpedanz
lpsc	Standard unbeeinflusster Fehlerstrom
Imax	Maximaler unbeeinflusster Fehlerstrom
Imin	Minimaler unbeeinflusster Fehlerstrom
Ub	Berührungsspannung bei maximalem unbeeinflussten Fehlerstrom (Berührungsspannung gemessen gegen Sonde S, falls verwendet)
R	Widerstand der Schleifenimpedanz
XL	Blindwiderstand der Schleifenimpedanz
Ulpe	Spannung L-PE
Freq	Frequenz

Der Standard unbeeinflusste Fehlerstrom ISC wird folgendermaßen berechnet:

$$I_{PSC} = \frac{230 V}{Z}$$

mit:
$$U_{L-PE} = 230 V \pm 10 \%$$

Die unbeeinflussten Fehlerströme I_{Min} and I_{Max} werden folgendermaßen berechnet:

$$I_{Min} = \frac{C_{min}U_{N(L-PE)}}{Z_{(L-PE)hot}} \qquad \text{mit:} \qquad Z_{(L-PE)hot} = \sqrt{(1.5R_{L-PE})^2 + X_{L-PE}^2} \\ C_{min} = \begin{cases} 0.95; \ U_{N(L-PE)} = 230 \ V \ \pm 10 \ \% \\ 1.00; \ otherwise \end{cases}$$

und

 $I_{Max} = \frac{C_{max}U_{N(L-PE)}}{Z_{L-PE}}$ mit: $Z_{L-PE} = \sqrt{R_{L-PE}^2 + X_{L-PE}^2}$

$$C_{max} = \begin{cases} 1.05; U_{N(L-PE)} = 230 \ V \ \pm 10 \ \% \\ 1.10; \ otherwise \end{cases}$$

Für detaillierte Informationen lesen Sie die A 1143 - Euro Z 290 A-Adapter Bedienungsanleitung.

7.11 Zline – Leitungsimpedanz und unbeeinflusster Kurzschlussstrom

Abbildung 7.38: Menü Z line Messung

Prüfparameter / Grenzwerte

Sicherungstyp	Auswahl des Sicherungstyps [gG, NV, B, C, D, K]	
Sicherung I	Nennstrom der gewählten Sicherung	
Sicherung t	Maximale Auslösezeit der gewählten Sicherung	
la (lpsc)	Minimaler Kurzschlussstrom für die gewählte Sicherung	
Die Referenzdaten für die Sicherungen finden Sie im Anhang A.		

Anschlussplan

Abbildung 7.39: Phase-Nullleiter- oder Phase-Phase-Messung der Leitungsimpedanz - Anschluss des Commander-Prüfsteckers und der 3-Leiter-Messleitung

Messverfahren

•	Wählen Sie die Z line Funktion
•	Stellen Sie die Prüfparameter / Grenzwerte ein.
•	Schließen Sie die Prüfleitungen am Messgerät an.
•	Schließen Sie die Prüfleitungen oder den Commander
	Prüfstecker am Prüfling an, siehe Abbildung 7.39 .
•	Starten Sie die Messung.
•	Speichern Sie die Ergebnisse (optional).

Abbildung 7.40: Beispiele für Ergebnisse der Leitungsimpedanz-Messung

Prüfergebnisse / Teilergebnisse

Z	Leitungsimpedanz
lpsc	unbeeinflusster Kurzschlussstrom
Un	Spannung L-N
R	Widerstand der Leitungsimpedanz
XL	Blindwiderstand der Leitungsimpedanz

Der unbeeinflusste Kurzschlussstrom I_{PSC} wird folgendermaßen berechnet:

$$I_{PSC} = \frac{U_N \times k_{SC}}{Z}$$

mit:

 U_{n}Nennspannung U_{L-N} oder U_{L1-L2} (siehe Tabelle unten)

k_{sc}Korrekturfaktor (Isc Faktor) für I_{PSC} (siehe Kapitel **4.6.4 Einstellungen**).

Un	Eingangsspannungsbereich (L-N oder L-L)
110 V	$(93 \text{ V} \le \text{U}_{\text{L-N}} \le 134 \text{ V})$
230 V	$(185 \text{ V} \le \text{U}_{\text{L-N}} \le 266 \text{ V})$
400 V	$(321 \text{ V} \le \text{U}_{\text{L-I}} \le 485 \text{ V})$

7.12 Z loop m Ω – Hochpräzise Leitungsimpedanz und unbeeinflusster Kurzschlussstrom

Abbildung 7.41: Menü Z loop mΩ

Prüfparameter / Grenzwerte

Prüfung	Typ der Prüfung [L/N, L/L]	
Sicherungstyp	Auswahl des Sicherungstyps [gG, NV, B, C, D, K]	
Sicherung I	Nennstrom der gewählten Sicherung	
Sicherung t	Maximale Auslösezeit der gewählten Sicherung	
la (lpsc)	Minimaler Kurzschlussstrom für die gewählte Sicherung	
Die Referenzdaten für die Sicherungen finden Sie im Anhang A.		

Anschlussplan

Abbildung 7.42: Hochpräzise Messung der Leitungsimpedanz Phase-Nullleiter oder Phase-Phase -Anschluss des A 1143

Messverfahren

- Wählen Sie die Z line mΩ Funktion
 - Stellen Sie die Prüfparameter / Grenzwerte ein.
 - Schließen Sie die Pr
 üfleitungen am A 1143 Euro Z 290 A-Adapter an und schalten Sie ihn ein.
 - Schließen den A1143 Euro Z 290 A-Adapter mit RS232-PS / 2-Kabel an das Messgerät an.
- Schließen Sie die Prüfleitungen am Prüfling an, siehe Abbildung 7.42.

- Starten Sie die Messung mit
- oder mit der Taste.
- Speichern Sie die Ergebnisse (optional).

🛨 Z line mΩ	t 18:5 4 د	🛨 Z line mΩ ζ	18:53
z 310 mΩ		Z 342 mΩ Imax3p 1.42 kA	
Ipsc 742 A		Ipsc 1.17 kA	
R 308 mΩ XL 39 mΩ Imax 779 A Imin 471 A		R 339 mΩ XL 49 mΩ Imin2p 744 A	≣
Test L/N Z	?	Test L/L Fuse Type B Fuse L	?
Fuse t 5 s Uin 23 la(lpsc) 200 A Freq 50.	5 V	Fuse t 5 s la(lpsc) 200 A Freq 49.9 Hz	444

Abbildung 7.43: Beispiele für Ergebnisse der hochpräzisen Leitungsimpedanzmessung

Prüfergebnisse / Teilergebnisse

Ζ	Leitungsimpedanz
lpsc	Standard unbeeinflusster Kurzschlussstrom (A)
Imax	Max. unbeeinflusster Kurzschlussstrom (A)
Imin	Minimaler unbeeinflusster Kurzschlussstrom (A)
lmax2p	Maximaler Zwei-Phasen unbeeinflusster Kurzschlussstrom (A)
lmin2p	Minimaler Zwei-Phasen unbeeinflusster Kurzschlussstrom (A)
lmax3p	Maximaler Drei-Phasen unbeeinflusster Kurzschlussstrom (A)
lmin3p	Minimaler Drei-Phasen unbeeinflusster Kurzschlussstrom (A)
R	Widerstand der Leitungsimpedanz
XL	Blindwiderstand der Leitungsimpedanz
Uln	Spannung L-N oder L-L
Freq	Frequenz

Der Standard unbeeinflusste Fehlerstrom I_{PSC} wird folgendermaßen berechnet:

$$I_{PSC} = \frac{230 V}{Z} \qquad \text{mit:} \qquad U_{L-N} = 230 V \pm 10 \%$$
$$I_{PSC} = \frac{400 V}{Z} \qquad \text{mit:} \qquad U_{L-L} = 400 V \pm 10 \%$$

Die unbeeinflussten Fehlerströme I_{Min} , I_{Min2p} , I_{Min3p} und I_{Max} , I_{Max2p} , I_{Max3p} werden folgendermaßen berechnet:

$I_{Min} = \frac{C_{min}U_{N(L-N)}}{Z_{(L-N)hot}}$	mit:	$Z_{(L-N)hot} = \sqrt{(1.5 \times R_{(L-N)})^2 + X_{(L-N)}^2}$ $C_{min} = \begin{cases} 0.95; \ U_{N(L-N)} = 230 \ V \ \pm \ 10 \ \% \\ 1.00; \ otherwise \end{cases}$
$I_{Max} = \frac{C_{max}U_{N(L-N)}}{Z_{(L-N)}}$	mit:	$\begin{aligned} Z_{(L-N)} &= \sqrt{R_{(L-N)}^2 + X_{(L-N)}^2} \\ C_{max} &= \begin{cases} 1.05; U_{N(L-N)} = 230 \ V \ \pm \ 10 \ \% \\ 1.10; \ otherwise \end{cases} \end{aligned}$

$I_{Min2p} = \frac{C_{min}U_{N(L-L)}}{Z_{(L-L)hot}}$	mit:	$Z_{(L-L)hot} = \sqrt{(1.5 \times R_{(L-L)})^2 + X_{(L-L)}^2}$ $C_{min} = \begin{cases} 0.95; U_{N(L-L)} = 400 V \pm 10 \% \\ 1.00; otherwise \end{cases}$
$I_{Max2p} = \frac{C_{max}U_{N(L-L)}}{Z_{(L-L)}}$	mit:	$\begin{split} Z_{(L-L)} &= \sqrt{R_{(L-L)}^2 + X_{(L-L)}^2} \\ C_{max} &= \begin{cases} 1.05; U_{N(L-L)} = 400 \ V \ \pm 10 \ \% \\ 1.10; \ otherwise \end{cases} \end{split}$
$I_{Min3p} = \frac{C_{min} \times U_{N(L-L)}}{\sqrt{3}} \frac{2}{Z_{(L-L)hot}}$	mit:	$Z_{(L-L)hot} = \sqrt{(1.5 \times R_{(L-L)})^2 + X_{(L-L)}^2}$ $C_{min} = \begin{cases} 0.95; U_{N(L-L)} = 400 V \pm 10 \% \\ 1.00; otherwise \end{cases}$
$I_{Max3p} = \frac{C_{max} \times U_{N(L-L)}}{\sqrt{3}} \frac{2}{Z_{(L-L)}}$	mit:	$\begin{split} Z_{(L-L)} &= \sqrt{R_{(L-L)}^2 + X_{(L-L)}^2} \\ C_{max} &= \begin{cases} 1.05; U_{N(L-L)} = 400 \ V \ \pm 10 \ \% \\ 1.10; \ otherwise \end{cases} \end{split}$

Für detaillierte Informationen lesen Sie die A 1143 - Euro Z 290 A-Adapter Bedienungsanleitung.

7.13 Spannungsfallmessung

Der Spannungsabfall wird auf der Grundlage der Differenz zwischen der Leitungsimpedanz an den Anschlusspunkten (Steckdosen) und der Leitungsimpedanz am Referenzpunkt (üblicherweise die Impedanz an der Schalttafel) berechnet.

Abbildung 7.44: Menü Spannungsabfallmessung

Prüfparameter / Grenzwerte

Sicherungstyp	Auswahl des Sicherungstyps [gG, NV, B, C, D, K]	
Sicherung I	Nennstrom der gewählten Sicherung	
Sicherung t	Maximale Auslösezeit der gewählten Sicherung	
Limit(dU)	Maximaler Spannungsabfall [3.0 % - 9.0 %]	
Die Referenzdaten für die Sicherungen finden Sie im Anhang A.		

Anschlussplan

Abbildung 7.45: Spannungsabfallmessung – Anschluss des Commander-Prüfstecker und der Dreileiter-Prüfleitung

Messverfahren

Schritt 1: Messen der Impedanz Zref am Referenzpunkt

•	Wählen Sie die Funktion Spannungsabfall.

- Stellen Sie die Prüfparameter / Grenzwerte ein.
- Schließen Sie die Pr
 üfleitungen am Messger
 ät an.
 - Schließen Sie die Pr
 üfleitungen am Ausgangspunkt der elektrischen Anlage an, siehe Abbildung 7.45.
- Tippen Sie auf oder wählen Sie das Ombol, um Zref Messung zu starten.
- Tippen Sie auf das Symbol, um Zref messen.

Schritt 2: Messen des Spannungsabfalls

- Wählen Sie die Funktion Spannungsabfall.
- Schließen Sie die Pr
 üfleitungen am Messger
 ät an.
- Schließen Sie die Pr
 üfleitungen oder den Commander Pr
 üfstecker an den Pr
 üfpunkten an, siehe Abbildung 7.45.
- Starten Sie die Messung.
- Speichern Sie die Ergebnisse (optional).

Abbildung 7.46: Beispiel für das Zref Messergebnis (SCHRITT 1)

Abbildung 7.47: Beispiel für das Messergebnis Der Spannungsabfallmessung (Schritt 2)

Prüfergebnisse / Teilergebnisse

dU	Spannungsabfall
lpsc	Unbeeinflusster Kurzschlussstrom
Un	Spannung L-N
Zref	Referenzleitungsimpedanz
Z	Leitungsimpedanz

Der Spannungsabfall wird folgendermaßen berechnet:

$$dU[\%] = \frac{(Z - Z_{REF}) \cdot I_N}{U_N} \cdot 100$$

mit:

dU	Berechneter Spannungsabfall	

Zref Impedanz am Referenzpunkt

Z Impedanz am Messpunkt

U_n Nennspannung

In Nennstrom der gewählten Sicherung (Sicherung 1)

Un	Eingangsspannungsbereich (L-N oder L-L)
110 V	$(93 \text{ V} \le \text{U}_{\text{L-N}} \le 134 \text{ V})$
230 V	$(185 \text{ V} \le \text{U}_{\text{L-N}} \le 266 \text{ V})$
400 V	$(321 \text{ V} \le \text{U}_{\text{L-I}} \le 485 \text{ V})$

7.14 Erde – Erdungswiderstand (3-Leitungs Prüfung)

Abbildung 7.48: Menü Erde

Prüfparameter / Grenzwerte

Limit(Re) Maximaler Widerstand [AUS, $1 \Omega \dots 5 k\Omega$]

Anschlusspläne

Abbildung 7.50: Erdableitwiderstand Messung einer Blitzschutzanlage

- Wählen Sie die Funktion Erde.
- Stellen Sie die Prüfparameter / Grenzwerte ein.
- Schließen Sie die Pr
 üfleitungen am Messger
 ät an.
- Schließen Sie die Prüfleitungen am Prüfobjekt an., siehe Abbildung 7.49

und Abbildung 7.50.

- Starten Sie die Messung.
- Speichern Sie die Ergebnisse (optional).

스 Earth	(16:28	🗂 Earth	(16:28
0 77		07 2	×	
Rc 0.0 kΩ Rp	0.0 κΩ ?	Rc 0.0 kΩ Rp	Ο.Ο κΩ	?
1000000 200		limit/Po) 20.0		
Land (of)				444

Abbildung 7.51: Beispiele für Ergebnisse der Erdungswiderstandsmessung

Prüfergebnisse / Teilergebnisse

Re	Erdungswiderstand
Rc	Widerstand der H (Strom) Sonde
Rp	Widerstand der S (Strom) Sonde

7.15 Erde 2 Stromzangen - Kontaktlose Erdungswiderstandsmessung (mit zwei Stromzangen)

Abbildung 7.52: Menü Erde 2 Stromzangen

Prüfparameter / Grenzwerte

Limit(Re) Maximaler Widerstand [AUS, $1 \Omega \dots 30 \Omega$]

Anschlussplan

Abbildung 7.53: Berührungslose Erdungswiderstandsmessung

•	Wählen Sie die Funktion Erde 2 Stromzangen.
•	Stellen Sie die Prüfparameter / Grenzwerte ein.
•	Schließen Sie die Prüfleitungen am Messgerät an.
•	Klemmen am Prüfobjekt, siehe Abbildung 7.53.
•	Starten Sie die Messung.
•	Stoppen Sie die Messung.
•	Speichern Sie die Ergebnisse (optional).

Abbildung 7.54: Beispiele für Ergebnisse der Erdungswiderstandsmessung

Prüfergebnisse / Teilergebnisse

Re Erdungswiderstand

7.16 Ro - Spezifischer Erdwiderstand

Abbildung 7.55: Menü Erde Ro

Prüfparameter / Grenzwerte

Entfernung Entfernung zwischen den Sonden [0,1 m ... 30.0 m] oder [1 ft ... 100 ft]

Anschlussplan

Abbildung 7.56: Spezifische Erdwiderstandsmessung

- Wählen Sie die Funktion Ro.
- Stellen Sie die Prüfparameter / Grenzwerte ein.
- Schließen Sie den Adapter A 1199 am Messgerät an.
- Schließen Sie die Pr
 üfleitungen an den Erdsonden an, siehe Abbildung 7.56
- Starten Sie die Messung.
- Speichern Sie die Ergebnisse (optional).

Abbildung 7.57: Beispiele für Ergebnisse der Messung des spezifischen Erdwiderstands

Prüfergebnisse / Teilergebnisse

ρ	Spezifischer Erdwiderstand
Rc	Widerstand der H, E (Strom) Sonde
Rp	Widerstand der S, ES (Potential) Sonde

7.17 Leistung

Power		۲.	15:14
P W	,		
· ·			⊞
S VA	PF	%	?
	in du	/0	
Ch1 clamp type Range	A1391 40 A		

Abbildung 7.58: Menü Leistung

Prüfparameter / Grenzwerte

Ch1 Stromzangen Typ	Stromzange [A1018, A1019, A1391]
Bereich	Bereich für den ausgewählten Stromzange A1018 [20 A] A1019 [20 A] A1391 [40 A, 300 A]

Anschlussplan

Abbildung 7.59: Messverfahren Leistungsmessung

- Wählen Sie die Funktion Leistung.
- Stellen Sie die Prüfparameter / Grenzwerte ein.
- Schließen Sie die Spannungsmessleitungen und Stromzange am Messgerät an.
- Schließen Sie die Spannungsmessleitungen und die Stromzange am Pr
 üfling an (siehe Abbildung 7.59).
- Starten Sie die Messung.
- Stoppen Sie die Messung.
- Speichern Sie die Ergebnisse (optional).

Abbildung 7.60: Beispiele für Ergebnisse Leistungsmessung

Р	Wirkleistung
S	Scheinleistung
Q	Blindleistung (kapazitiv oder induktiv)
PF	Leistungsfaktor (kapazitiv oder induktiv)
THDU	Spannungsklirrfaktor

7.18 Oberwellen

т на	armoni	ics			ť 🔲	18:17
J: 5 V/div 2 I: 1 A/div	4 6	8 10	THDu THDi U:h0	% A		► 12,
2	4 6	8 10				?
imit(THI	Du)	0 18	5 %		و ا	

Abbildung 7.61: Menü Oberwellen

Prüfparameter / Grenzwerte

Ch1 Stromzangen Typ	Stromzange [A1018, A1019, A1391]
Bereich	Bereich für den ausgewählten Stromzange
	A1018 [20 A]
	A1019 [20 A]
	A1391 [40 A, 300 A]
Grenzwert (THDu)	Max. THD der Spannung [3 % 10 %]

Anschlussplan

Abbildung 7.62: Oberwellenmessung

- Wählen Sie die Funktion Oberwellen.
- Stellen Sie die Prüfparameter / Grenzwerte ein.
- Schließen Sie die Spannungsmessleitungen und Stromzange am Messgerät an.
 - Schließen Sie die Spannungsmessleitungen und die Stromzange am Pr
 üfling an (siehe Abbildung 7.62).
- Starten Sie die Messung.
- Stoppen Sie die Messung.
- Speichern Sie die Ergebnisse (optional).

▲ Harmonics	(18:21	▲ Harmonics	(18:15
U: 188 V/div. THDu 0.2 %		UI 28 U/div THDu 37.5 %	
U:h1 229 v		U:h3 30.1 V	
I: 2. R/div I:h1 4.99 A	Ì₫,	<u>1: 2 A/div</u> 1.1.13 1.50 A	Ì₫,
	✓ 🗉		× 🗉
Limit(THDu) 5 %	•••	Limit(THDu) 5 %	••• ق

Abbildung 7.63: Beispiele für Ergebnisse Oberwellenmessung

U:h (i)	TRMS Spannung der ausgewählten Oberwellen [h0 h12]
l:h (i)	TRMS Strom der ausgewählten Oberwellen [h0 h12]
THDu	Spannungsklirrfaktor
THDi	Stromklirrfaktor

7.19 Stroms

Abbildung 7.64: Menü Strom

Prüfparameter / Grenzwerte

Ch1 Stromzangen Typ	Stromzange [A1018, A1019, A1391]
Bereich	Bereich für den ausgewählten Stromzange A1018 [20 A] A1019 [20 A] A1391 [40 A, 300 A]
Grenzwert (I1)	Max. Differenzableitstrom [OFF, 0.1 mA 100 mA]

Anschlussplan

Abbildung 7.65: Ableitstrom- und Laststrommessungen

Messverfahren

•	Wählen Sie	e die F	unkt	ion Ströme.				
•	Stellen Sie	die P	rüfpa	rameter / Grer	nzwer	te ein.		
•	Schließen S	Sie di	e Stro	omzange am N	/lessg	jerät an.		
•	Schließen Abbildung	Sie 7.65	die	Stromzange	am	Prüfling	an,	siehe
•	Starten Sie	die N	lessi	ung.				
•	Stoppen Si	e die	Mess	sung.				
		0:	<u>а Г</u>	alaniaaa (amtia				

Speichern Sie die Ergebnisse (optional).

Abbildung 7.66: Beispiele für Ergebnisse Strommessung

I1 Ableitstrom oder Laststrom

7.20 ISFL – Erster Fehlerableitstrom (nur MI 3152)

Abbildung 7.67: Menü ISFL Messung

Prüfparameter / Grenzwerte

Imax (lsc1, lsc2) Maximaler erster Fehlerableitstrom [OFF, 3.0 mA ... 19,5 mA]

Anschlusspläne

Abbildung 7.68: Messung des höchste ersten Fehlerableitstrom mit der 3-Leiter-Messleitung

Abbildung 7.69: Messung des ersten Fehlerableitstrom im RCD geschützten Stromkreis mit der 3-Leiter-Messleitung

Messverfahren

Wählen Sie die Funktion ISFL.
 Stellen Sie die Prüfparameter / Grenzwerte ein.
 Schließen Sie die Prüfleitungen am Messgerät an.

- Schließen Sie die Pr
 üfleitungen am Pr
 üfobjekt an, siehe Abbildung 7.68 und Abbildung 7.69.
- Starten Sie die Messung.
- Speichern Sie die Ergebnisse (optional).

Abbildung 7.70: Beispiel für die Messergebnisse des ersten Fehlerableitstroms

lsc1	Erster Fehlerableitstrom bei Einzelfehler zwischen L1/PE
lsc2	Erster Fehlerableitstrom bei Einzelfehler zwischen L2/PE

7.21 IMD - Prüfung von Isolationsüberwachungsgeräten (nur MI 3152)

Diese Funktion ermöglicht die Überprüfung der Alarmschwelle der Isolationswächter Geräte (IMD), durch Aufbringen eines veränderbaren Widerstands zwischen den L1/PE- und L2/PE-Klemmen.

Abbildung 7.71: Menü IMD Prüfung

Prüfparameter / Grenzwerte

Prüfung	Prüfmodus [MANUAL R, MANUAL I, AUTO R, AUTO I]
t Schritt	Timer (AUTO R und AUTO I Prüfmodi) [1 s 99 s]
Rmin(R1,R2)	Min. Isolationswiderstand [AUS, 5 k Ω 640 k Ω],
lmax(l1,l2)	Max. Fehlerableitstrom [AUS, 0.1 mA 19,9 mA]

Anschlussplan

Abbildung 7.72: Anschluss mit 3-Leiter-Messleitung

Prüfablauf (MANUELL R, MANUELL I)

•	Wählen Sie die Funktion IMD.
•	Stellen Sie die Prüfparameter MANUEL R oder MANUEL I ein.
	Stellen Sie weitere Prüfparameter / Grenzwerte ein.
•	Schließen Sie die Prüfleitungen am Messgerät an.
•	Schließen Sie die Prüfleitungen am Prüfling an, siehe Abbildung 7.72.
•	Starten Sie die Messung.
•	Verwenden Sie die Contractionswiderstand *) zu ändern, bis das IMD einen Isolationsfehler für L1 meldet.
•	Drücken Sie die oder die Taste, um den Leitungsanschluß auf L2 zu wechseln. (Für den Fall, das IMD schaltet Spannungsversorgung aus, wechselt das Messgerät automatisch Leitungsanschluss auf L2 und fährt mit dem Test fort, sobald die Versorgungsspannung am Messgerät anliegt.)
•	Verwenden Sie die Contractionswiderstand *) zu ändern, bis das IMD einen Isolationsfehler für L2 meldet.
•	Drücken Sie die oder die Taste. (Wenn das IMD die Spannungsversorgung aus schaltet, schaltet das Messgerät automatisch auf die Anzeige BESTANDEN / NICHT BESTANDEN.)
•	Verwenden Sie 💙 um die PASS- / FAIL- / KEIN STATUS- Anzeige auszuwählen.
•	Drücken Sie die oder die Taste, um die Auswahl zu bestätigen und beenden Sie die Messung.
•	Speichern Sie die Ergebnisse (optional).
Prüfa	blauf (AUTO R, AUTO I)
	Stellen Sie die Prüfnarameter ALITO R oder ALITO Lein
•	Stellen Sie weitere Prüfnarameter / Grenzwerte ein
	Schließen Sie die Prüfleitungen am Messgerät an
	Schließen Sie die Prüfleitungen am Prüfling an siehe Abbildung 7 72
	Starten Sie die Messung
·	Der Isolationswiderstand zwischen L1-PE wird automatisch entsprechend dem Grenzwert *) in jedem Zeitintervall (Timer-Funktion) verringert. Zur
	Beschleunigung der Prüfung drücken Sie die 🗢 🖒 oder die 🔍 🔍

Beschleunigung der Prüfung drücken Sie die	¢	⇔	ode
Tasten, bis das IMD einen Isolationsfehler für	L1 me	ldet.	

•	Drücken Sie die oder die oder die Taste, um den Leitungsanschluß auf L2 zu wechseln. (Für den Fall, das IMD schaltet Spannungsversorgung aus, wechselt das Messgerät automatisch Leitungsanschluss auf L2 und fährt mit dem Test fort, sobald die Versorgungsspannung am Messgerät anliegt.)
•	Der Isolationswiderstand zwischen L1-PE wird automatisch entsprechend dem Grenzwert *) in jedem Zeitintervall (Timer-Funktion) verringert. Zur Beschleunigung der Prüfung drücken Sie die bis das IMD einen Isolationsfehler für L2 meldet.
•	Drücken Sie die oder die oder die Taste. (Wenn das IMD die Spannungsversorgung aus schaltet, schaltet das Messgerät automatisch auf die Anzeige BESTANDEN / NICHT BESTANDEN.)
Þ	Verwenden Sie www.indie PASS- / FAIL- / KEIN STATUS- Anzeige auszuwählen.
•	Drücken Sie die eder die Taste, um die Auswahl zu bestätigen und beenden Sie die Messung.
•	Speichern Sie die Ergebnisse (optional).

^{*)} Wenn die Unterfunktion MANUELL R oder AUTO R ausgewählt ist, wird der Startwert des Isolationswiderstandes bestimmt durch $R_{START} \cong 1.5 \times R_{LIMIT}$. Wenn die Unterfunktion MANUELL I oder AUTO I ausgewählt ist, wird der Startwert des

Isolationswiderstandes bestimmt durch $R_{START} \cong 1.5 \times \frac{U_{L1-L2}}{I_{LIMIT}}$

Abbildung 7.73: Beispiele für Ergebnisse der IMD Prüfung

Testergebnisse / Teilergebnisse

R1	Schwellenwert Isolationswiderstand zwischen L1-PE
l1	Berechneter erster Fehlerableitstrom für R1
R2	Schwellenwert Isolationswiderstand zwischen L2-PE

I2 Berechneter erster Fehlerableitstrom für R2

Der berechnete erste Fehlerableitstrom bei Schwellenwert des Isolationswiderstands ist gegeben durch $I_{1(2)} = \frac{U_{L1-L2}}{R_{1(2)}}$, wobei U_{L1-L2} die Leiter-Leiter-Spannung ist. Der berechnete erste Fehlerstrom ist der maximale Strom, der fließen würde, wenn der Isolationswiderstand auf den gleichen Wert wie der angelegte Prüfwiderstand abnimmt, und einen erste Fehler zwischen der gegenüberliegenden Leitung und PE angenommen wird.

7.22 Rpe - Schutzleiterwiderstand

Abbildung 7.74: Menü Schutzleiterwiderstandsmessung

Prüfparameter / Grenzwerte

Masseverbindung	[Rpe,lokal]
RCD	[Ja, Nein]
Limit(Re)	Max. Widerstand [AUS, 0,1 Ω 20,0 Ω]

Anschlussplan

Abbildung 7.75: Anschluss des Commander-Prüfsteckers und der Dreileiter-Prüfleitung

Messverfahren

- Wählen Sie die Funktion Rpe.
- Stellen Sie die Prüfparameter / Grenzwerte ein.
- Schließen Sie die Prüfleitungen am Messgerät an.
- Schließen Sie die Pr
 üfleitungen oder den Commander Pr
 üfstecker am Pr
 üfling an, siehe Abbildung 7.75.
- Starten Sie die Messung.
- Speichern Sie die Ergebnisse (optional).

Abbildung 7.76: Beispiele für Ergebnisse der Schutzleiterwiderstandsmessung

Prüfergebnisse / Teilergebnisse

Rpe Schutzleiterwiderstand

7.23 Beleuchtungsstärke

Abbildung 7.77: Menü Beleuchtungsstärkemessung

Prüfparameter / Grenzwerte

Limit(E) Minimale Beleuchtungsstärke [AUS, 0,1 lux ... 20 klux]

Positionierung des Sensors

•	Wählen Sie die Funktion Beleuchtungsstärke.
•	Stellen Sie die Prüfparameter / Grenzwerte ein.
•	Schließen Sie den Beleuchtungsstärke Sensor am Messgerät an
•	Positionieren Sie den LUXmeter Sensor Abbildung 7.78
	Stellen Sie sicher, dass der LUXmeter Sensor eingeschaltet ist.
•	Starten Sie die Messung.
•	Stoppen Sie die Messung.
•	Speichern Sie die Ergebnisse (optional).

Abbildung 7.79: Beispiele für Ergebnisse Beleuchtungsstärkemessung

E Beleuchtungsstärke

8 Auto Test

Der Auto-Test führt voreingestellte Messabläufe automatisch durch. Die folgenden Auto Tests stehen zur Verfügung:

- ▶ AUTO TT,
- AUTO TN (RCD),
- AUTO TN und
- [TN/TT, IT (nur MI 3152)]

Der Auto-Test kann im Hauptmenü Auto Tests oder vom Memory Organizer, durch Tippen auf

das Symbol oder durch Drücken der 17 Taste aus jedem ausgewählten Strukturobjekt ausgewählt werden.

Abbildung 8.1: Menü Auto-Test

Abbildung 8.2: Auto Test Auswahl vom Memory Organizer

Verwenden Sie Kapitel 6 *Einzelprüfungen* als Referenz für die Auto-Test-Bildschirm Organisation und als Anleitung, wie man Parameter und Grenzwerte einstellt.

8.1 AUTO TT – Auto Test Sequenzen für TT Erdungssysteme

Prüfungen / Messungen die in AUTO TT-Sequenz ausgeführt werden

Spannung	
Z line	
Spannungsfallmessung	
Zs rcd	
RCD Uc	

🛨 АИТО ТТ	(10:05
Uln V	Uc V	
dU%	ZrefΩ	
Ζ(LN)Ω	lpsc (LN) A	
Ζ (LPE)Ω	lpsc (LPE) A	$\langle \circ \rangle$
l dN Type Fuse Type	30 mA AC C	?
Fuse t	0.5 A 0.035 s	··· آرا

Abbildung 8.3: Menü AUTO TT

Prüfparameter / Grenzwerte

l dN	Nenn-Fehlerstromempfindlichkeit des RCD IAN [10 mA, 30 mA, 100 mA,
	300 mA, 500 mA, 1000 mA].
Тур	RCD Typ [AC, A, F, B*, B+*]
Empfindlichkeit	Charakteristik [G, S]
Sicherungstyp	Auswahl des Sicherungstyps [gG, NV, B, C, D, K]
Sicherung I	Nennstrom der gewählten Sicherung
Sicherung t	Maximale Auslösezeit der gewählten Sicherung
Limit(dU)	Maximaler Spannungsabfall [3.0 % 9,0 %]
Limit Uc(Uc)	Konventioneller Grenzwert für die Berührungsspannung [25 V, 50 V].
la(lpsc (LN),	Minimaler Kurzschlussstrom für die gewählte Sicherung
lpsc (LPE))	
Die Referenzdate	n für die Sicherungen finden Sie im Anhang A

Die Referenzdaten für die Sicherungen finden Sie im Anhang A. *nur MI 3152.

Anschlussplan

Abbildung 8.4: AUTO TT Messung

- Wählen Sie die Funktion AUTO TT.
- Messen Sie die Impedanz Zref am Ausgangspunkt
- (optional), siehe Kapitel **7.13 Spannungsfallmessung**.
- Schließen Sie die Pr
 üfleitungen oder den Commander Pr
 üfstecker am Pr
 üfling an, siehe Abbildung 8.4.
- Starten Sie den Auto Test.
- Speichern Sie die Ergebnisse (optional).

	(10:05		(10:09
Uln V Uc V	/ 🕨	Uln 238 V Uc	0.0 v 🗸	
dU% Zref 0.54 g) (E)	dU 0.1 % 🗸 Zref	0.54 Ω	
Z (LN)Ω Ipsc (LN)A	x 🙂	Z (LN) 0.62 Ω Ipsc (LN	i) 370 🗛 🗸 🖊	
Z (LPE)Ω Ipsc (LPE)A	• (O)	Z (LPE) 0.69 Ω Ipsc (LP	'E) 332 A 🗸	⊞
IdN 30mA Type AC Fuse Type C	?	IdN 30 mA Type AC Fuse Type NV	 ✓ 	$\langle \bullet \rangle$
Fuse 1 0.5 A 238 C		Fuse I2 AFuse t0.035 s		•••

Abbildung 8.5: Beispiele für Ergebnisse der AUTO TT Messung

Spannung zwischen Phase und Nullleiter
Spannungsabfall
Leitungsimpedanz
Schleifenimpedanz
Berührungsspannung
Referenzleitungsimpedanz
Unbeeinflusster Kurzschlussstrom
Unbeeinflusster Fehlerstrom

8.2 AUTO TN (RCD) – Auto Test Sequenz für TN

Erdungssystem mit RCD

Prüfungen / Messungen in der AUTO TN (RCD) Sequenz ausgeführt werden

Spannung Z line Spannungsfallmessung Zs rcd Rpe(rcd)

📥 AUTO TN (RCD)			(12:11
Uln V	R	Ω		
dU%	Zref	ΩΩ		E
Z (LN)Ω	Ipsc (LN Ipsc (LP	() A PE) A		2
Fuse Type Fuse I	C 16 A			•
Fuse t Limit(dU)	0.4 s 3.0 %	L PE	N	
Limit(R) la(lpsc (LN),lpsc (LPE))	0.3 Ω 32 A		ڙ	444

Abbildung 8.6: Menü AUTO TN (RCD)

Prüfparameter / Grenzwerte

Sicherungstyp	Auswahl des Sicherungstyps [gG, NV, B, C, D, K]
Sicherung I	Nennstrom der gewählten Sicherung
Sicherung t	Maximale Auslösezeit der gewählten Sicherung
Limit(dU)	Maximaler Spannungsabfall [3.0 % 9,0 %]
Limit(Rpe)	Max. Widerstand [AUS, 0,1 Ω 20,0 Ω]
la(lpsc (LN), lpsc (LPE))	Minimaler Kurzschlussstrom für die gewählte Sicherung

Die Referenzdaten für die Sicherungen finden Sie im Anhang A.

Anschlussplan

Abbildung 8.7: AUTO TN (RCD) Messung

- Wählen Sie die Funktion AUTO TT (RCD).
- Stellen Sie die Prüfparameter / Grenzwerte ein.
- Messen Sie die Impedanz Zref am Ausgangspunkt (optional), siehe Kapitel 7.13 Spannungsfallmessung.
- Schließen Sie die Pr
 üfleitungen am Messger
 ät an.
- Schließen Sie die Pr
 üfleitungen oder den Commander Pr
 üfstecker am Pr
 üfling an, siehe Abbildung 8.7.
- Starten Sie den Auto Test.
- Speichern Sie die Ergebnisse (optional).

🗅 AUTO TN (RCD)		10:12	🗅 AUTO TN (RCD)		()	10:14
Uln V	R Ω		Uln 239 v	R 0.35 Ω	~	
dU%	Zref 0.54 Ω	(m)	dU 0.1 % 🗸	Zref 0.54 Ω		
Ζ (LN)Ω	lpsc (LN) A		Ζ (LN) 0.64 Ω	Ipsc (LN) 359 A		
Ζ (LPE)Ω	Ipsc (LPE) A	$\langle \bullet \rangle$	Z (LPE) 0.76 Ω	Ipsc (LPE) 303 A	~	⊟
Fuse Type Fuse I Fuse t	NV 2 A 0 035 s	?	Fuse Type Fuse I Fuse t	NV 2A		$\langle \circ \rangle$
Limit(dU) Limit(R) la(lpsc (LN),lpsc (LPE))	3.5 % 2 Ω 32.5 A ↓ 238 ● 0 239	<u></u> ور	Limit(dU) Limit(R) la(lpsc (LN),lpsc (LPE))	3.5 % 2 Ω 32.5 A L PE • 239 ● 239	€	•••

Abbildung 8.8: Beispiele für Ergebnisse der AUTO TT (RCD) Messung

Uln	Spannung zwischen Phase und Nullleiter
dU	Spannungsabfall
Z (LN)	Leitungsimpedanz
Z (LPE)	Schleifenimpedanz
Rpe	Schutzleiterwiderstand
Zref	Referenzleitungsimpedanz
lpsc (LN)	Unbeeinflusster Kurzschlussstrom
Ipsc (LPE)	Unbeeinflusster Fehlerstrom

8.3 AUTO TN – Auto Test Sequenzen für TN Erdungssystem

ohne RCD

Prüfungen / Messungen in der AUTO TN Sequenz ausgeführt werden

Spannung Z line Spannungsfallmessung Z Loop Rpe

🖆 АИТО ТМ		۲ 	12:10
Uln V	R	Ω	
dU%	Zref	Ω	(III)
Ζ(LN)Ω	lpsc (LN) A	
Z (LPE)Ω	lpsc (LP	E) A	$\langle \mathbf{O} \rangle$
Fuse Type Fuse I	C 16 A		?
Fuse t Limit(dU)	0.4 s 3.0 %	L PE N	•
Limit(R) la(lpsc (LN),lpsc (LPE))	0.4 Ω 32 A	· • • • •	444

Abbildung 8.9: Menü AUTO TN

Prüfparameter / Grenzwerte

Sicherungstyp	Auswahl des Sicherungstyps [gG, NV, B, C, D, K]
Sicherung I	Nennstrom der gewählten Sicherung
Sicherung t	Maximale Auslösezeit der gewählten Sicherung
Limit(dU)	Maximaler Spannungsabfall [3.0 % 9,0 %]
Limit(Rpe)	Max. Widerstand [AUS, 0,1 Ω 20,0 Ω]
la(lpsc (LN),	Minimaler Kurzschlussstrom für die gewählte Sicherung
lpsc (LPE))	

Die Referenzdaten für die Sicherungen finden Sie im Anhang A.

Anschlussplan

Abbildung 8.10: AUTO TN Messung

- Wählen Sie die Funktion AUTO TN.
- Stellen Sie die Prüfparameter / Grenzwerte ein.
- Messen Sie die Impedanz Zref am Ausgangspunkt (optional), siehe Kapitel 7.13 Spannungsfallmessung.
- Schließen Sie die Pr
 üfleitungen am Messger
 ät an.
- Schließen Sie die Pr
 üfleitungen oder den Commander Pr
 üfstecker am Pr
 üfling an, siehe Abbildung 8.10.
- Starten Sie den Auto Test.
- Speichern Sie die Ergebnisse (optional).

	▲	UTO TN		(10:16	♪ AU	ITO TN		ć	10:18
	Uln	v	R	Ω		UIn	237 v	R	0.33 Ω 🗸	
	dU	%	Zref	0.54 Ω		dU	0.1 % 🗸	Zref	0.54 Ω	
	Z (LN)	ΩΩ	lpsc (LN)	A	<u>نت</u>	Z (LN)	0.61 Ω	lpsc (LN)	377 🗛 🗸	
	Z (LPI	Ε)Ω	Ipsc (LPE)	A	$\langle \bullet \rangle$	Z (LPE)	0.73 Ω	Ipsc (LPE) 317 🗛 🗸	∷
I	Fuse Ty Fuse I	pe	NV 2 A		?	 Fuse Type Fuse I	2	NV 2 A	 ✓ 	0
	Fuse t Limit(dL	b	0.035 s 3.5 %		-	Fuse t		0.035 s 3.5 %		
	Limit(R) la(lpsc (, LN),Ipse (LPE))	2 Ω 32.5 A	• 237 • 0 238	••	Limit(R) la(lpsc (Ll	N),Ipsc (LPE))	2Ω 32.5 A	• 237 • 0 238	444

Abbildung 8.11: Beispiele für Ergebnisse der AUTO TN Messung

Uln	Spannung zwischen Phase und Nullleiter
dU	Spannungsabfall
Z (LN)	Leitungsimpedanz
Z (LPE)	Schleifenimpedanz
Rpe	Schutzleiterwiderstand
Zref	Referenzleitungsimpedanz
lpsc (LN)	Unbeeinflusster Kurzschlussstrom
Ipsc (LPE)	Unbeeinflusster Fehlerstrom

8.4 AUTO IT – Auto Test Sequenz für IT Erdungssystem (nur

MI 3152)

Prüfungen / Messungen in der AUTO IT Sequenz ausgeführt werden

Spannung	
Z line	
Spannungsfallmessung	
ISFL	
IMD	

🛨 АИТО ІТ		(11:00
Uin V	dU Iso2	%	
R1kΩ	11	mA	
R2kΩ Z (LN)Ω	12 Ipsc (L	mA .N) A	$\langle \circ \rangle$
ZrefΩ Fuse Type	N۷		?
Fuse I Fuse t Test	2 A 0.035 s Auto R		111

Abbildung 8.12: Menü AUTO IT

Prüfparameter / Grenzwerte

Prüfung	Prüfmodus [MANUELL R, MANUELL I, AUTO R, AUTO I]
t Schritt	Timer (AUTO R und AUTO I Prüfmodi) [1 s 99 s]
Sicherungstyp	Auswahl des Sicherungstyps [gG, NV, B, C, D, K]
Sicherung I	Nennstrom der gewählten Sicherung
Sicherung t	Maximale Auslösezeit der gewählten Sicherung
Limit(dU)	Maximaler Spannungsabfall [3.0 % 9,0 %]
Rmin(R1,R2)	Min. Isolationswiderstand [AUS, 5 kΩ 640 kΩ],
lmax(l1,l2)	Max. Fehlerableitstrom [AUS, 0.1 mA 19,9 mA]
Imax(Isc1,Isc2)	Maximaler erster Fehlerableitstrom [OFF, 3.0 mA 19,5 mA]
la(lpsc (LN))	Minimaler Kurzschlussstrom für die gewählte Sicherung
Die Deferendet	an für die Sieherungen finden Sie im Anhang A

Die Referenzdaten für die Sicherungen finden Sie im Anhang A.

Anschlussplan

Abbildung 8.13: AUTO IT Messung

- Wählen Sie die Funktion AUTO IT.
- Stellen Sie die Prüfparameter / Grenzwerte ein.
- Messen Sie die Impedanz Zref am Ausgangspunkt
- (optional), siehe Kapitel 7.13 Spannungsfallmessung.
- Schließen Sie die Pr
 üfleitungen am Messger
 ät an.
- Schließen Sie die Pr
 üfleitungen am Pr
 üfling an, siehe Abbildung 8.13.
- Starten Sie den Auto Test.
- Speichern Sie die Ergebnisse (optional).

Ð	AUTO IT		¢	11:01	Ð	AUTO IT			(11:02
Uln	v	dU _	%		Uln	219 v	dU	0.0 %	<u> </u>	
lsc [.] R1	1 mA k0	lsc2 _	mA mA	()	lsc1 R1	2.2 mA ∨ 50 k0	lsc2	2.2 mA <	^	
R2	kΩ	12	mA		R2	45 kΩ	12	4.9 mA	~	
Z (L	.N)Ω	lpsc (LN)_	A	$\langle \mathbf{O} \rangle$	Z (LN))3.98 Ω	lpsc (LN)5	7.8 A	~	∷
Zre	f 4.03Ω			2	Zref	4.03 Ω				10
Fuse	lype I	2 A	L1 PE L2	i	Fuse I Fuse I	уре	2 A	L1 PE	L2	
Test	, t	Auto R	$\underbrace{\begin{array}{c}\bullet}109\bullet110\bullet\\219\end{array}$	•••	Test		Auto R	• 109 • 1 [.] 219	وا	•••

Abbildung 8.14: Beispiele für Ergebnisse der AUTO IT Messung

Uln	Spannung zwischen den Phasen L1 und L2
dU	Spannungsabfall
lsc1	Erster Fehlerableitstrom bei Einzelfehler zwischen L1/PE
lsc2	Erster Fehlerableitstrom bei Einzelfehler zwischen L2/PE
R1	Schwellenwert Isolationswiderstand zwischen L1-PE
R2	Schwellenwert Isolationswiderstand zwischen L2-PE
l1	Berechneter erster Fehlerableitstrom für R1
12	Berechneter erster Fehlerableitstrom für R2
Z (LN)	Leitungsimpedanz
Zref	Referenzleitungsimpedanz
lpsc (LN)	Unbeeinflusster Kurzschlussstrom

9 Kommunikation

Die Baumstruktur und gespeicherten Ergebnisse aus dem Memory Organizer können auf einen PC übertragen werden. Ein spezielles Kommunikationsprogramm auf dem PC erkennt das Messgerät automatisch und aktiviert die Datenübertragung zwischen dem Messgerät und dem PC.

Es sind drei Kommunikationsschnittstellen auf dem Messgerät zur Verfügung: USB, RS 232 und Bluetooth.

9.1 USB und RS232 Kommunikation

Abhängig von der erkannten Schnittstelle wählt das Gerät automatisch den Kommunikationsmodus aus. USB-Schnittstelle hat Vorrang.

Abbildung 9.1: Schnittstellenverbindung für die Datenübertragung über PC COM-Port

Wie eine USB- oder RS-232-Verbindung hergestellt wird:

- Kommunikation über RS-232: Verbinden Sie einen COM-Port des PC über das serielle Kommunikationskabel PS/2 - RS232 mit dem PS/2-Anschluss des Messgeräts;
- Verbindung über USB: Verbinden Sie einen USB-Anschluss des PC über das USB Schnittstellenkabel mit dem USB-Anschluss des Messgeräts.
- Schalten Sie den PC und das Messgerät ein.
- Führen Sie die Metrel ES Manager Software aus.
- Der PC und das Messgerät erkennen einander automatisch.
- Das Gerät ist bereit, mit dem PC zu kommunizieren.

Das Programm *EurolinkPRO* ist eine PC-Software, die unter Windows XP, Windows Vista, Windows 8 und Windows 8,1 läuft.

9.2 Bluetooth Kommunikation

Das interne Bluetooth-Modul ermöglicht die einfache Kommunikation über Bluetooth mit PC und Android-Geräte.

Wie eine Bluetooth-Verbindung zwischen dem Gerät und dem PC konfiguriert wird

- Schalten Sie das Messgerät ein.
 Konfigurieren Sie auf dem PC eine serielle Schnittstelle, um die Kommunikation zwischen Gerät und PC über eine Bluetooth-Verbindung zu ermöglichen. Für das Zusammenschalten der Geräte ist üblicherweise kein Code erforderlich.
 Führen Sie die Metrel ES Manager Software aus.
- Funren Sie die Metrei ES Manager Soπware aus.
- Der PC und das Messgerät erkennen einander automatisch.
- Das Gerät ist bereit, mit dem PC zu kommunizieren.

Wie eine Bluetooth-Verbindung zwischen dem Gerät und einem Android-Gerät konfiguriert wird

- Schalten Sie das Messgerät ein.
 Einige Android-Anwendungen führen das Setup einer Bluetooth-Verbindung automatisch durch. Es wird empfohlen, diese Option zu nutzen, wenn sie vorhanden ist. Diese Option wird von Metrels Android-Anwendungen unterstützt.
 Falls diese Option von der gewählten Android-Anwendung nicht unterstützt wird, dann konfigurieren Sie eine Bluetooth-Verbindung mithilfe des Bluetooth-Konfigurationstools des Android-Geräts. Für das Zusammenschalten der Geräte ist üblicherweise kein
- Code erforderlich. Das Messgerät und das Android-Gerät sind nun bereit, miteinander zu kommunizieren.

Hinweise

- Manchmal fordern der PC oder das Android-Gerät dazu auf, den Code einzugeben.
 Geben Sie f
 ür eine korrekte Konfiguration der Bluetooth-Verbindung den Code ,NNNN' ein.
- Der Name des korrekt konfigurierten Bluetooth-Geräts muss den Gerätetyp und die Seriennummer enthalten, z. B. *MI 3152 BT-12240429I*. Wenn der Bluetooth-Modul einen anderen Namen erhalten hat, muss die Konfiguration wiederholt werden.
- Treten ernsthafte Probleme mit der Bluetooth-Kommunikation auf, ist es möglich das interne Bluetooth-Modul neu zu initialisieren. Die Initialisierung wird während der Grundeinstellungen durchgeführt. Im Falle einer erfolgreichen Initialisierung wird am Ende des "INTERNES BLUETOOTH SUCHEN OK!" angezeigt. Siehe Kapitel 4.6.5 Grundeinstellungen

10 Aktualisieren des Messgeräts

Das Messgerät kann von einem PC über die RS232- oder USB-Schnittstelle aktualisiert werden. Dadurch ist es möglich, das Gerät auf dem neuesten Stand zu halten, sogar wenn sich Normen oder Vorschriften ändern. Der Firmware-Upgrade erfordert Internetzugang und kann aus der *Metrel ES Manager* Software mit Hilfe einer speziellen Upgrade-Software durchgeführt werden - *FlashMe* wird Sie durch die Upgrade Prozedur führen. Weitere Informationen finden Sie in Metrel ES Manager-Hilfe-Datei.
11 Wartung

Unbefugten Personen ist nicht erlaubt, das EurotestXC Messgerät zu öffnen. Außer den Batterien und den Sicherungen unter der rückseitigen Abdeckung gibt es im Inneren des Geräts keine vom Benutzer zu ersetzenden Bauteile.

11.1 Austausch der Sicherung

Unter der rückseitigen Abdeckung des Eurotest-Messgeräts gibt es drei Sicherungen.

F1 M 0.315 A / 250 V, 20×5 mm

Diese Sicherung schützt die internen Schaltkreise bei den Durchgangsfunktionen, falls die Prüfspitzen während der Messung versehentlich an die Netzspannung angeschlossen werden.

F2, F3 F 4 A / 500 V, 32×6,3 mm (Schaltvermögen: 50 kA

Sicherungen für den allgemeinen Eingangsschutz der Prüfanschlüsse L/L1 und N/L2.

Abbildung 11.1: Sicherungen

Warnungen:

- Trennen Sie vor dem Öffnen der Abdeckung des Batterie-/Sicherungsfachs jegliches Messzubehör ab und schalten Sie das Gerät aus. Im Inneren herrscht eine gefährliche Spannung vor!
- Ersetzen Sie die defekte Sicherung nur durch den ursprünglichen Typ, anderenfalls kann das Gerät oder Zubehör beschädigt und/oder die Sicherheit des Bedieners beeinträchtigt werden!

11.2 Reinigung

Für das Gehäuse ist keine besondere Wartung erforderlich. Verwenden Sie zum Reinigen der Oberfläche des Geräts oder Zubehörs einen weichen Lappen, der leicht mit Seifenwasser oder Alkohol befeuchtet wird. Lassen Sie das Gerät vor der Benutzung vollständig abtrocknen.

Warnungen:

- Verwenden Sie keine Flüssigkeiten auf der Basis von Benzin oder Kohlenwasserstoffen!
- · Gießen Sie keine Reinigungsflüssigkeit über das Gerät!

11.3 Periodische Kalibrierung

Es ist wichtig, dass alle Messgeräte regelmäßig kalibriert werden, damit die technischen Spezifikationen in diesem Handbuch gewährleistet sind. Wir empfehlen eine jährliche Kalibrierung. Die Kalibrierung darf nur von autorisiertem Fachpersonal durchgeführt werden. Für weitere Informationen kontaktieren Sie bitte Ihren Händler.

11.4 Kundendienst

Für Garantieleistungen und sonstige Reparaturen wenden Sie sich bitte an Ihren Händler.

12 Technische Daten

12.1 R iso – Isolationswiderstand

Uiso: 50 V, 100 V und 250 V

Riso Isolationswiderstand

Messbereich entsprechend EN 61557 ist 0,15 M Ω 199,9 M Ω .

Messbereich (MΩ)	Auflösung (MΩ)	Genauigkeit
0,00 19,99	0,01	±(5 % des Ablesewerts + 3 Digits)
20,0 99,9	0,1	\pm (10 % des Ablesewerts)
100,0 199,9		\pm (20 % des Ablesewerts)

Uiso: 500 V und 1000 V

Riso – Isolationswiderstand

Messbereich entsprechend EN 61557 ist 0,15 M Ω 999 M Ω .

Messbereich (MΩ)	Auflösung (MΩ)	Genauigkeit
0,00 19,99	0,01	±(5 % des Ablesewerts + 3 Digits)
20,0 199,9	0,1	\pm (5 % des Ablesewerts)
200 999	1	\pm (10 % des Ablesewerts)

Uiso: 2500V (nur MI 3152H)

Riso – Isolationswiderstand

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,00 M 19,99 M	0,01 M	±(5 % des Ablesewerts + 3 Digits)
20,0 M 199,9 M	0,1 M	\pm (5 % des Ablesewerts)
200 M 999 M	1 M	\pm (10 % des Ablesewerts)
1,00 G 19,99 G	0,01 G	\pm (10 % des Ablesewerts)

Um – Spannung

Messbereich (V)	Auflösung (V)	Genauigkeit
0 2700	1	\pm (3 % des Ablesewerts + 3
		Digits)

Nennspannungen Uiso	$.50 V_{DC}, 100 V_{DC}, 250 V_{DC}, 500 V_{DC}, 1000 V_{DC}$
	2500 V _{DC} (nur MI 3152H)
Leerlaufspannung	0 % / +20 % der Nennspannung
Messstrom	.min. 1 mA bei $R_N = U_N \times 1 k\Omega/V$
Kurzschlussstrom	.max. 3 mA
Anzahl der möglichen Prüfungen	.> 700 bei voll aufgeladener Batterie

Automatisches Entladen nach der Prüfung.

Die angegebene Genauigkeit gilt, wenn die Dreileiter-Prüfleitung verwendet wird, bei Verwendung der Commander-Prüfspitze ist sie dagegen bis100 M Ω gültig. Die angegebene Genauigkeit gilt bis 100 M Ω wenn die relative Luftfeuchtigkeit > 85 % ist. Falls das Gerät feucht wird, kann das Ergebnis beeinträchtigt werden. In diesem Fall wird empfohlen, das Gerät und sein Zubehör mindestens 24 Stunden lang zu trocknen. Der Fehler unter Betriebsbedingungen darf maximal der Fehler unter Referenzbedingungen (in der Anleitung für jede Funktion angegeben) \pm 5 % des Messwerts sein.

12.2 Diagnose Prüfung (nur MI 3152H)

Uiso: 500V, 1000 V, 2500 V

DAR – Dielektrische Absorptionsrate

Messbereich	Auflösung	Genauigkeit
0,01 9,99	0,01	\pm (5 % des Ablesewerts + 2
		Digits)
10,0 100,0	0,1	\pm (5 % des Ablesewerts)

PI - Polarisationsindex

Messbereich	Auflösung	Genauigkeit
0,01 9,99	0,01	±(5 % des Ablesewerts + 2 Digits)
10,0 100,0	0,1	\pm (5 % des Ablesewerts)

Für **Riso**, **R60**, und **Um** Teilergebnisse gelten technischen Spezifikationen in Kapitel **12.1** *R iso* – *Isolationswiderstand* definiert sind.

12.3 Widerstand der Erdverbindung und der Potentialausgleichsverbindungen

Messbereich entsprechend EN 61557 ist 0,16 Ω ... 1999 Ω .

R - Widerstand

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,00 19,99	0,01	±(3 % des Ablesewerts + 3 Digits)
20,0 199,9	0,1	(E % dec Ablecoverte)
200 1999	1	\pm (5 % des Ablesewerts)

R+, R - Widerstand

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,0 199,9	0,1	\pm (5 % des Ablesewerts + 5
200 1999	1	Digits)

Automatische Polaritätsumkehr der Prüfspannung.

12.4 Durchgang – Kontinuierliche Widerstandsmessung mit niedrigem Strom

R - Durchgangswiderstand

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,0 19,9	0,1	\pm (5 % des Ablesewerts + 10
20 1999	1	Digits)

Leerlaufspannung	6.5 VDC 18 VDC
Kurzschlussstrom	.max. 8.5 mA
Kompensation der Prüfleitungen	bis zu 5 Ω

12.5 RCD Prüfung

Allgemeine Daten

Nennfehlerstrom (A,AC)	10 mA, 30 mA, 100 mA, 300 mA, 500 mA,
	1000 mA
Genauigkeit des Nennfehlerstroms	$-0 / +0.1 \cdot I_{\Delta}; I_{\Delta} = I_{\Delta}N, 2 \times I_{\Delta}N, 5 \times I_{\Delta}N$
	-0,1·I∆ / +0; I∆ = 0,5×I∆N
	AS/NZS 3017 gewählt: ± 5 %
Form des Prüfstroms	Sinuswelle (AC), gepulst (A, F), geglättet DC (B, B+)
Gleichstrom-Offset beim gepulsten Prüfst	rom 6 mA (typisch)
RCD Typ	(unverzögert), S (zeitverzögert), PRCD, PRCD-K,
	PRCD-S
Prüfstrom Anfangspolarität	0° oder 180°
Spannungsbereich	93 V 134 V (45 Hz 65 Hz)
	185 V 266 V (45 Hz 65 Hz)

		$I_{\Delta N} \times 1$	/2		$I_{\Delta N} \times 1$			$I_{\Delta N} \times 2$	2		I _{AN} × ł	5		RCD	I_{Δ}
$I_{\Delta}N$ (mA)	AC	A, F	B, B+	AC	A, F	B, B+	AC	A, F	B, B+	AC	A, F	B, B+	AC	A, F	B, B+
10	5	3,5	5	10	20	20	20	40	40	50	100	100	\checkmark	\checkmark	✓
30	15	10,5	15	30	42	60	60	84	120	150	212	300	✓	<	<
100	50	35	50	100	141	200	200	282	400	500	707	1000	✓	\checkmark	~
300	150	105	150	300	424	600	600	848	n.a.	1500	n.a.	n.a.	✓	<	<
500	250	175	250	500	707	1000	1000	1410	n.a.	2500	n.a.	n.a.	✓	<	<
1000	500	350	500	1000	1410	n.a.	2000	n.a.	n.a.	n.a.	n.a.	n.a.	\checkmark	\checkmark	n.a.
n.a	n.anicht anwendbar														

AC Typsinusförmiger Prüfstrom

A, F Typen......gepulster Prüfstrom

B, B+ Typen geglätteter DC Strom (nur MI 3152)

12.5.1 RCD Uc – Berührungsspannung

Messbereich entsprechend EN 61557 ist 20,0 V ... 31.0 V für den Grenzwert der Berührungsspannung 25 V. Messbereich entsprechend EN 61557 ist 20,0 V ... 62.0 V für den Grenzwert der Berührungsspannung 50 V.

Uc – Berührungsspannung

<u> </u>		
Messbereich (V)	Auflösung (V)	Genauigkeit
0,0 19,9	0,1	(-0 % / +15 %) des
		Ablesewerts ± 10 Digits
20,0 99,9	0,1	(-0 % / +15 %) des
		Ablesewerts

Die Genauigkeit ist gültig, wenn die Netzspannung während der Messung stabil und der Schutzleiter frei von Störspannungen ist. Die angegebene Genauigkeit gilt für den gesamten Anwendungsbereich.

Prüfstrommax. 0,5×I_{\Delta N} Grenzwert Berührungsspannung25 V, 50 V

12.5.2 RCD t – Auslösezeit

Der gesamte Messbereich entspricht den Anforderungen der EN 61557.

Es sind maximale Messzeiten gemäß der gewählten Referenznorm für die RCD-Prüfung eingestellt.

t ∆N –Auslösezeit

Messbereich (ms)	Auflösung (ms)	Genauigkeit
0,0 40,0	0,1	±1 ms
(0,0) max. Zeit*	0,1	±3 ms

* Maximale Zeit - siehe die Normen Referenzen im Kapitel **4.6.4.1 RCD Standard**. Diese Spezifikation gilt für eine max. Zeit >40 ms.

12.5.3 RCD I – Auslösestrom

Der gesamte Messbereich entspricht den Anforderungen der EN 61557.

I ∆ – Auslösestrom

Messbereich	Auflösung I 🛆	Genauigkeit			
0,2×I _{∆N} 1,1×I _{∆N} (AC Typ)	0,05×I _{∆N}	$\pm 0,1 \times I_{\Delta N}$			
0,2×I _{∆N} 1.5×I _{∆N} (A Typ,	0,05×I _{∆N}	$\pm 0,1 imes I_{\Delta N}$			
I _{∆N} ≥30 mA)					
0,2×I _{∆N} 2.2×I _{∆N} (A Typ,	0,05×I _{∆N}	$\pm 0,1 \times I_{\Delta N}$			
I _{∆N} ≥30 mA)					
0,2×I _{∆N} 2,2×I _{∆N} (B Typ)	0,05×I _{∆N}	$\pm 0,1 \times I_{\Delta N}$			

t I∆ – Auslösezeit

Messbereich (ms)	Auflösung (ms)	Genauigkeit
0 300	1	±3 ms

Uc I∆ – Berührungsspannung

Messbereich (V)	Auflösung (V)	Genauigkeit
0,0 19,9	0,1	(-0 % / +15 %) des Ablesewerts \pm 10 Digits
20,0 99,9	0,1	(-0 % / +15 %) des Ablesewerts

Die Genauigkeit ist gültig, wenn die Netzspannung während der Messung stabil und der Schutzleiter frei von Störspannungen ist. Die angegebene Genauigkeit gilt für den vollen Betriebsbereich.

Auslöse Messung ist nicht für die verfügbar für $I_{\Delta N}$ =1000 mA (RCD Typ B, B+)

12.6 Z loop – Fehlerschleifenimpedanz und unbeeinflusster Fehlerstrom

Z - Fehlerschleifenimpedanz

Messbereich entsprechend EN 61557 ist 0,25 Ω ... 9,99 k Ω]

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,00 9,99	0,01	\pm (5 % des Ablesewerts + 5
10,0 99,9	0,1	Digits)
100 999	1	10.9% das Ablassworts
1,00 k 9,99 k	10	\pm 10 % des Adiesewents

Ipsc – Unbeeinflusster Fehlerstrom

Messbereich (A)	Auflösung (A)	Genauigkeit
0,00 9,99	0,01	
10,0 99,9	0,1	Beachten Sie die Genauigkeit
100 999	1	der Messung des
1,00 k 9,99 k	10	Fehlerschleifenwiderstands
10,0 k 23,0 k	100	

Die Genauigkeit ist gültig, wenn die Netzspannung während der Messung stabil ist.

Prüfstrom (bei 230 V)6.5 A (10 ms) Nennspannungsbereich......93 V ... 134 V (45 Hz ... 65 Hz) 185 V ... 266 V (45 Hz ... 65 Hz)

R, X_L Werte sind indikativ.

12.7 Zs rcd –Fehlerschleifenimpedanz und unbeeinflusster Fehlerstrom im System mit RCD

Z - Fehlerschleifenimpedanz

Messbereich entsprechend EN 61557 ist 0,46 Ω ... 9,99 k Ω]

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,00 9,99	0,01	\pm (5 % des Ablesewerts + 10
10,0 99,9	0,1	Digits)
100 999	1	10.8% dag Ablaggwarta
1,00 k 9,99 k	10	\pm 10 % des Adieseweits

Die Genauigkeit kann durch starke Störungen in der Netzspannung beeinträchtigt werden.

Ipsc – Unbeeinflusster Fehlerstrom

Messbereich (A)	Auflösung (A)	Genauigkeit
0,00 9,99	0,01	
10,0 99,9	0,1	Beachten Sie die Genauigkeit
100 999	1	der Messung des
1,00 k 9,99 k	10	Fehlerschleifenwiderstands
10,0 k 23,0 k	100	

12.8 Zline – Leitungsimpedanz und unbeeinflusster Kurzschlussstrom

Z – Leitungsimpedanz

Messbereich entsprechend EN 61557 ist 0,25 Ω ... 9,99 k Ω]

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,00 9,99	0,01	\pm (5 % des Ablesewerts + 5
10,0 99,9	0,1	Digits)
100 999	1	10% dec Ablacquerte
1,00 k 9,99 k	10	\pm 10 % des Adiesewerts

lpsc – Unbeeinflusster Kurzschlussstrom

Mess	bereich (A)	Auflösung (A)	Genauigkeit
0,0	0 0,99	0,01	
1,	0 99,9	0,1	Beachten Sie die Genauigkeit
10	0 999	1	der Messung des
1,00) k 99,99 k	10	Leitungswiderstands
10	0 k 199 k	1000	

Prüfstrom (bei 230 V)6.5 A (10 ms) Nennspannungsbereich......93 V ... 134 V (45 Hz ... 65 Hz) 185 V ... 266 V (45 Hz ... 65 Hz) 321 V ... 485 V (45 Hz ... 65 Hz)

R, X_L Werte sind indikativ.

12.9 Spannungsfallmessung

dU – Spannungsabfall

Messbereich (%)	Auflösung (%)	Genauigkeit
0,0 99,9	0,1	Beachten Sie die Genauigkeit der Leitungsimpedanzmessung(en)*

 Z_{REF} Messbereich......0,00 Ω ... 20,0 Ω

Prüfstrom (bei 230 V)	.6.5 A (10 ms)
Nennspannungsbereich	93 V 134 V (45 Hz 65 Hz)
	185 V 266 V (45 Hz 65 Hz)
	321 V 485 V (45 Hz 65 Hz)

*Siehe Kapitel **7.13 Spannungsfallmessung** für weitere Informationen zur Berechnung des Spannungsabfallergebnisses.

12.10 Rpe – Schutzleiterwiderstand

RCD NEIN

R – PE Schutzleiterwiderstand

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,00 19,99	0,01	\pm (5 % des Ablesewerts + 5
20,0 99,9	0,1	Digits)
100,0 199,9	0,1	10 % des Ablessworts
200 1999	1	\pm 10 % des Ablesewents

Messstrommin. 200 mA in Schutzleiterwiderstand von 2 Ω

RCD Ja, kein Auslösen des RCD.

R – PE Schutzleiterwiderstand

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,00 19,99	0,01	\pm (5 % des Ablesewerts + 10
20,0 99,9	0,1	Digits)
100,0 199,9	0,1	10 % dec Ablacewarte
200 1999	1	\pm 10 % des Adiesewerts

Die Genauigkeit kann durch starke Störungen in der Netzspannung beeinträchtigt werden.

Messstrom < 15 mA

12.11 Erde – Erdungswiderstand (3-Leiter Prüfung)

Re – Erdungswiderstand

Messhereich entsprechend EN61557-5 ist 2 00 0 1000 0

Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,00 19,99	0,01	(E % dec Ablecowerte + E
20,0 199,9	0,1	$\pm (5\% \text{ des Ablesewerts} + 5)$
200 9999	1	Digits)

Max. Widerstand der Hilfs-Erdelektrode R_{C}100× R_{E} oder 50 k Ω (je nachdem, was niedriger ist) Max. Sondenwiderstand R_P......100×R_E oder 50 k Ω (je nachdem, was niedriger ist)

Zusätzlicher Fehler für den Sondenwiderstand bei R_{Cmax} oder R_{Pmax} ±(10 % des Ablesewerts + 10 Digits)

Zusätzlicher Fehler bei 3 V Störspannung ($(50 \text{ Hz})\pm(5 \% \text{ des Ablesewerts} + 10 \text{ Digits})$
Leerlaufspannung	< 30 V AC
Kurzschlussstrom	< 30 mA
Frequenz der Prüfspannung	125 Hz
Prüfspannung Form	sinusförmig
Anzeigeschwelle der Störspannung	1 V (< 50 Ω , ungünstigster Fall))

Automatische Messung der Widerstände an Hilfselektrode und Sonde. Automatische Messung der Störspannung.

12.12 Erde 2 Stromzangen - Kontaktlose Erdungswiderstandsmessung (mit zwei Stromzangen)

Re – Erdungswiderstand		
Messbereich (Ω)	Auflösung (Ω)	Genauigkeit
0,00 19,99	0,01	±(10 % des Ablesewerts + 10 Digits)
20,0 30,0	0,1	\pm (20 % des Ablesewerts)
30,1 39,9	0,1	\pm (30 % des Ablesewerts)

*) Entfernung zwischen den Stromzangen> 30 cm.

Zusätzlicher Fehler bei 3 V Störspannung (50 Hz)..±10 % des Ablesewerts Frequenz der Prüfspannung......125 Hz Rauschstromanzeigeja Anzeige niedriger Zangenstromja

Zusätzlicher Stromzangen Fehler ist zu berücksichtigen.

12.13 Ro - Spezifischer Erdwiderstand

ρ – Spezifischer Erdwiderstand

Messbereich (Ωm)	Auflösung (Ωm)	Genauigkeit
0,0 99,9	0,1	
100 999	1	
1,00 k 9,99 k	0,01 k	Conquigkoit
10,0 k 99,9 k	0,1 k	Genauigkeit
100 k 9999 k	1 k	

ρ – Spezifischer Erdwiderstand

Messbereich (Ωft)	Auflösung (Ωft)	Genauigkeit
0,0 99,9	0,1	
100 999	1	Siehe Hipweie zur
1,00 k 9,99 k	0,01 k	
10,0 k 99,9 k	0,1 k	Genauigkeit
100 k 9999 k	1 k	

Prinzip:

 ρ = 2· π ·d·Re,

wobei Re ein gemessener Widerstand im 4-Draht-Verfahren und d der Abstand zwischen den Sonden ist.

Hinweis zur Genauigkeit:

Die Genauigkeit des Ergebnisses des spezifischen Erdwiderstandes hängt vom gemessenen Erdungswiderstand Re, wie folgt:

Re – Erdungswiderstand

Messbereich (Ω)	Genauigkeit
1,00 1999	±5 % vom Messwert
2000 19,99 k	±10 % vom Messwert
>20 k	±20 % vom Messwert

Zusätzliche Fehler:

Siehe Erdungswiderstand Dreileiter-Verfahren.

12.14 Spannung, Frequenz und Phasenfolge

12.14.1 Phasenfolge

Nennspannungsbereich des Systems..... 100 V_{AC} ... 550 V_{AC} Nennspannungsbereich....... 14 Hz ... 500 Hz Angezeigtes Ergebnis......... 1.2.3 oder 3.2.1

12.14.2 Spannung

Messbereich (V)	Auflösung (V)	Genauigkeit
0 550	1	\pm (2 % des Ablesewerts + 2
		Digits)

Ergebnisart.....Effektivwert (TRMS) Nennfrequenzbereich0 Hz, 14 Hz ... 500 Hz

12.14.3 Frequenz

Messbereich (Hz)	Auflösung (Hz)	Genauigkeit
0,00 9,99	0,01	\pm (0,2 % des Ablesewerts + 1
10,0 499,9	0,1	Digits)

12.14.4 Spannungsmonitor

Messbereich (V)	Auflösung (V)	Genauigkeit
10 550	1	\pm (2 % des Ablesewerts + 2
		Digits)

12.15 Ströme

Messgerät

Maximale Spannung am Messeingang C1 3 V Nennfrequenzbereich0 Hz, 40 Hz ... 500 Hz

Ch1 Stromzangen Typ A1018

Bereich: 20 A

I1 - Strom

Messbereich (A)	Auflösung (A)	Genauigkeit*
0,0 m 99,9 m	0,1 m	\pm (5 % des Ablesewerts + 5
		Digits)
100 m 999 m	1 m	\pm (3 % des Ablesewerts + 3
		Digits)
1,00 19,99	0,01	±(3 % des Ablesewerts)

Ch1 Stromzangen Typ A1019 Bereich: 20 A

I1 - Strom

Messbereich (A)	Auflösung (A)	Genauigkeit*
0,0 m 99,9 m	0,1 m	indikativ
100 m 999 m	1 m	\pm (5 % des Ablesewertes)
1,00 19,99	0,01	\pm (3 % des Ablesewerts)

Ch1 Stromzangen Typ A1391 Bereich: 40 A I1 - Strom

Messbereich (A)	Auflösung (A)	Genauigkeit*
0,00 1,99	0,01	±(3 % des Ablesewerts + 3 Digits)
2,00 19,99	0,01	\pm (3 % des Ablesewerts)
20,0 39,9	0,1	\pm (3 % des Ablesewerts)

Ch1 Stromzangen Typ A1391 Bereich: 300 A I1 - Strom

Messbereich (A)	Auflösung (A)	Genauigkeit*
0,00 19,99	0,01	indikativ
20,0 39,9	0,1	Indikativ
40,0 299,9	0,1	\pm (3 % des Ablesewerts + 5
		Digits)

* Die Genauigkeit gilt bei spezifizierten Betriebsbedingungen für das Messgerät und die Stromzange.

12.16 Leistung

Messeigenschaften

Funktionssymbole	Klasse gemäß IEC 61557-12	Messbereich
P - Wirkleistung	2,5	5 % 100 % I _{Nom} *)
S - Scheinleistung	2,5	5 % 100 % I _{Nom} *)
Q - Blindleistung	2,5	5 % 100 % I _{Nom} *)
PF - Leistungsfaktor	1	1 1
THDu	2.5	0 % 20 % U _{Nom}

^{*)} I_{Nom} ist abhängig vom eingestellten Stromzangentyp und dem ausgewählten Strombereich: A 1018:[20 A] A1019: [20 A]

A 1391: [40 A, 300 A]

Funktion	Messbereich
Leistung (P, S, Q)	0.00 W (VA, Var) 99.9 kW (kVA, kVar)
Leistungsfaktor	-1,00 1,00
Spannung THD	0,1 % 99,9 %

In dieser Spezifikation wurden Fehler externer Spannungs- und Stromwandler nicht berücksichtigt.

12.17 Oberwellen

Messeigenschaften

Funktionssymbole	Klasse gemäß IEC 61557-12	Messbereich
Uh	2,5	0 % 20 % U _{Nom}
THDu	2,5	0 % 20 % U _{Nom}
lh	2,5	0 % 100 % I _{Nom} *)
THDi	2,5	0 % 100 % I _{Nom} *)

*) I_{Nom} ist abhängig vom eingestellten Stromzangentyp und dem ausgewählten Strombereich: A 1018:[20 A] A1019: [20 A]

A 1391: [40 Å, 300 A]

Funktion	Messbereich
Spannungsoberwellen	0,1 V 500 V
Spannung THD	0,1 % 99,9 %
Stromoberschwingungen und Strom THD	0,00 A 199,9 A

In dieser Spezifikation wurden Fehler externer Spannungs- und Stromwandler nicht berücksichtigt.

12.18 ISFL – Erster Fehlerableitstrom (nur MI 3152)

Isc1, Isc2 – Erster Fehlerableitstrom		
Messbereich (mA)	Auflösung (mA)	Genauigkeit
0,0 19,9	0,1	±(5 % des Ablesewerts+ 3 Digits)
Messwiderstand	ca. 390 Ω	
Nennspannungsbereich		V
	$185 \ V \le U_{L1-L2} \le 266$	V

12.19 IMD (nur MI 3152)

R1, R2 – Schwellenwert Isolationswiderstand

R (kΩ)	Auflösung (kΩ)	Hinweise
5 640	5	bis zu 128 Schritte

I1, I2 – Erster Fehlerableitstrom bei Schwellenisolationswiderstand

l (mA)	Auflösung (mA)	Hinweis
0,0 19,9	0,1	berechneter Wert*)

*⁾Siehe Kapitel **7.21 IMD - Prüfung von Isolationsüberwachungsgeräten (nur MI 3152)** Weitere Informationen zur Berechnung der ersten Fehlerleckstrom bei Schwellenisolationswiderstand.

12.20 Beleuchtungsstärke

Beleuchtungsstärke (Luxmeter Sensor, Typ B)

Die angegebene Genauigkeit gilt für den vollen Betriebsbereich.

Messbereich (lux)	Auflösung (lux)	Genauigkeit
0,01 19,99	0,01	±(5 % des Ablesewerts + 2 Digits)
20,0 199,9	0,1	
200 1999	1	\pm (5 % des Ablesewerts)
2,00 19,99 k	10	

Messverfahren	Silizium-Fotodiode mit V(λ) Filter
Fehler Spektralempfindlichkeit	< 3.8 % gemäß CIE-Kurve
Kosinus Fehler	< 2.5 % bis zu einem Einfallswinkel von \pm 85 [°]
Gesamtgenauigkeit	angepasst an DIN 5032 Klasse C Standard

Beleuchtungsstärke (Luxmeter Sensor, Typ C) Die angegebene Genauigkeit gilt für den vollen Betriebsbereich.

Messbereich (lux)	Auflösung (lux)	Genauigkeit
0,01 19,99	0,01	±(10 % des Ablesewerts + 3 Digits)
20,0 199,9	0,1	
200 1999	1	\pm (10 % des Ablesewerts)
2,00 19,99 k	10	

Messverfahren	Silizium-Photodiode
Kosinus Fehler	. < 2.5 % bis zu einem Einfallswinkel von \pm 85 [°]
Gesamtgenauigkeit	angepasst an DIN 5032 Klasse C Standard

12.21 Allgemeine Daten

Stromversorgung Betriebsdauer	.6 x 1,2V Ni-MH Batteriezellen, Größe AA .typisch 9 Stunden
Eingangsspannung Ladebuchse Eingangsstrom Ladebuchse Batterieladestrom	.12 V \pm 10 % .max. 1000 mA .125 mA (normal Lademodus) 725 mA (Schnelllademodus)
Messkategorie	.600 V CAT III .300 V CAT IV
Schutzklasse Verschmutzungsgrad Schutzart	.doppelte Isolierung .2 .IP 40
Display	.4.3 inch (10.9 cm) 480x272 Pixel TFT Farb Display mit Touch Screen
Abmessungen (B \times H \times T) Gewicht	.23 cm × 10,3 cm × 11,5 cm .1.3 kg, ohne Batterien / Akkus
Referenz Bedingungen Temperaturbereich Luftfeuchtigkeitsbereich	.10 °C 30 °C .40 %RH 70 %RH
Betriebsbedingungen	
Max. rel. Luftfeuchte	.0 °C 40 °C .95 %RH (0C ° C 40 °C), nicht kondensierend
Lagerbedingungen	
Temperaturbereich	10 °C +70 °C
Max. rel. Luftfeuchte	.90 %RH (0C ° C +40 °C
	80 % RH. (40 °C 60 °C)
Kommunikationsschnittstellen, Speic	her
RS 232	. 115200 bits/s, 8N1 serielles Protokoll
USB	USB 2.0 HI-Speed Interface
Datenspeicherkanazität	8 CB interner Speicher
Bluetooth	.Class 2

Der Fehler unter Betriebsbedingungen darf maximal der Fehler unter Referenzbedingungen (in der Anleitung für jede Funktion angegeben) +1 % des Messwerts sein.

Anhang A – Sicherungstabelle – IPSC

Sicherungstyp NV

Nenn	Abschaltzeit [s]				
Strom	35m	0,1	0,2	0,4	5
(A)		Min. unbeeinf	lusster Kurzsch	lussstrom (A)	
2	32,5	22,3	18,7	15,9	9,1
4	65,6	46,4	38,8	31,9	18,7
6	102,8	70	56,5	46,4	26,7
10	165,8	115,3	96,5	80,7	46,4
16	206,9	150,8	126,1	107,4	66,3
20	276,8	204,2	170,8	145,5	86,7
25	361,3	257,5	215,4	180,2	109,3
35	618,1	453,2	374	308,7	169,5
50	919,2	640	545	464,2	266,9
63	1217,2	821,7	663,3	545	319,1
80	1567,2	1133,1	964,9	836,5	447,9
100	2075,3	1429	1195,4	1018	585,4
125	2826,3	2006	1708,3	1454,8	765,1
160	3538,2	2485,1	2042,1	1678,1	947,9
200	4555,5	3488,5	2970,8	2529,9	1354,5
250	6032,4	4399,6	3615,3	2918,2	1590,6
315	7766,8	6066,6	4985,1	4096,4	2272,9
400	10577,7	7929,1	6632,9	5450,5	2766,1
500	13619	10933,5	8825,4	7515,7	3952,7
630	19619,3	14037,4	11534,9	9310,9	4985,1
710	19712,3	17766,9	14341,3	11996,9	6423,2
800	25260,3	20059,8	16192,1	13545,1	7252,1
1000	34402,1	23555,5	19356,3	16192,1	9146,2
1250	45555,1	36152,6	29182,1	24411,6	13070,1

Nenn	Abschaltzeit [s]				
Strom	35m	0,1	0,2	0,4	5
(A)		Min. unbeeinf	lusster Kurzsch	lussstrom (A)	
2	32,5	22,3	18,7	15,9	9,1
4	65,6	46,4	38,8	31,9	18,7
6	102,8	70	56,5	46,4	26,7
10	165,8	115,3	96,5	80,7	46,4
13	193,1	144,8	117,9	100	56,2
16	206,9	150,8	126,1	107,4	66,3
20	276,8	204,2	170,8	145,5	86,7
25	361,3	257,5	215,4	180,2	109,3
32	539,1	361,5	307,9	271,7	159,1
35	618,1	453,2	374	308,7	169,5
40	694,2	464,2	381,4	319,1	190,1
50	919,2	640	545	464,2	266,9
63	1217,2	821,7	663,3	545	319,1
80	1567,2	1133,1	964,9	836,5	447,9
100	2075,3	1429	1195,4	1018	585,4

Sicherungstyp gG

Sicherungstyp B

Nenn		Abschaltzeit [s]				
Strom	35m	0,1	0,2	0,4	5	
(A)		Min. unbeeinf	lusster Kurzsch	lussstrom (A)		
6	30	30	30	30	30	
10	50	50	50	50	50	
13	65	65	65	65	65	
15	75	75	75	75	75	
16	80	80	80	80	80	
20	100	100	100	100	100	
25	125	125	125	125	125	
32	160	160	160	160	160	
40	200	200	200	200	200	
50	250	250	250	250	250	
63	315	315	315	315	315	

Nenn	Abschaltzeit [s]				
Strom	35m	0,1	0,2	0,4	5
(A)		Min. unbeeinf	lusster Kurzsch	lussstrom (A)	
0,5	5	5	5	5	2,7
1	10	10	10	10	5,4
1,6	16	16	16	16	8,6
2	20	20	20	20	10,8
4	40	40	40	40	21,6
6	60	60	60	60	32,4
10	100	100	100	100	54
13	130	130	130	130	70,2
15	150	150	150	150	83
16	160	160	160	160	86,4
20	200	200	200	200	108
25	250	250	250	250	135
32	320	320	320	320	172,8
40	400	400	400	400	216
50	500	500	500	500	270
63	630	630	630	630	340,2

Sicherungstyp C

Sicherungstyp D

Nenn		Abschaltzeit [s]				
Strom	35m	0,1	0,2	0,4	5	
(A)		Min. unbeeinf	lusster Kurzsch	lussstrom (A)		
0,5	10	10	10	10	2,7	
1	20	20	20	20	5,4	
1,6	32	32	32	32	8,6	
2	40	40	40	40	10,8	
4	80	80	80	80	21,6	
6	120	120	120	120	32,4	
10	200	200	200	200	54	
13	260	260	260	260	70,2	
15	300	300	300	300	81	
16	320	320	320	320	86,4	
20	400	400	400	400	108	
25	500	500	500	500	135	
32	640	640	640	640	172,8	

Sicherungstyp K

Nenn	Abschaltzeit [s]				
Strom	35m	0,1	0,2	0,4	
(A)		Min. unbeeinfl	usster Kurzsch	lussstrom (A)	
0,5	7,5	7,5	7,5	7,5	
1	15	15	15	15	
1,6	24	24	24	24	
2	30	30	30	30	
4	60	60	60	60	
6	90	90	90	90	
10	150	150	150	150	
13	195	195	195	195	
15	225	225	225	225	
16	240	240	240	240	
20	300	300	300	300	
25	375	375	375	375	
32	480	480	480	480	

Anhang B – Anmerkungen zum Profil

Das Messgerät unterstützt das Arbeiten mit mehreren Profilen. Dieser Anhang C enthält eine geringfügigen Änderungen, die mit länderspezifischen Anzahl von Anforderungen zusammenhängen. Einige der Änderungen bedeuten geänderte aufgeführte Funktionsdaten, die sich auf Hauptabschnitte beziehen, und andere sind zusätzliche Funktionen. Einige geringfügige Änderungen beziehen sich auch auf verschiedene Anforderungen desselben Markts, die durch verschiedene Anbieter abgedeckt werden.

B.1 Profil Austria (ALAJ)

Die Prüfung des speziell verzögerten RCD-G Typs wird unterstützt.

Änderungen in Kapitel 7.6 Prüfen von RCDs

Eine Auswahl speziell verzögerter RCD-G Typen mit den **Empfindlichkeits-**Parametern ist im Abschnitt **Prüfparameter / Grenzwerte** wie folgt hinzugefügt:

Empfindlichkeit Charakteristik [G, S]

Die Zeitgrenzwerte sind dieselben wie beim RCD des allgemeinen Typs und die Berührungsspannung wird genauso berechnet wie beim RCD des allgemeinen Typs.

Selektive (verzögerte) RCDs und RCDs mit (G)-Verzögerung haben ein verzögertes Ansprechverhalten. Sie enthalten für den Fehlerstrom einen Integrationsmechanismus, der das verzögerte Auslösen generiert. Jedoch beeinflusst die Berührungsspannungs-Vorprüfung im Messverfahren auch den RCD. Vor Durchführung der Auslöseprüfung wird eine Zeitverzögerung von 30 s eingeschaltet, damit das RCD vom Typ S nach Vorprüfungen den Ausgangszustand wiederherstellen kann. Für denselben Zweck wurde für RCDs vom Typ G eine Zeitverzögerung von 5 s eingefügt.

RCI	RCD Typ Berührungsspannung Uc proportional zu		RCD Typ Berührungsspannung Uc proportional zu		Nenn I _{∆N}	Hinweise
AC	- G	1,05×I _{∆N}	beliebig			
AC	S	2×1,05×I _{∆N}				
A, F	- G	1,4×1,05×I _{∆N}	≥ 30 mA	Alle Modelle		
A , F	S	2×1,4×1,05×Ι _{ΔΝ}				
A, F	 G	$2 \times 1,05 \times I_{\Delta N}$	< 30 mA			
A , F	S	$2 \times 2 \times 1,05 \times I_{\Delta N}$				
B, B+		2×1,05×I _{∆N}	beliebig	*nur MI 2150		
B, B+	S	2×2×1,05×I _{∆N}				

*Tabelle 7.1: Beziehung zwischen Uc und I*_{ΔN} wie folgt geändert:

Technische Daten unverändert.

B.2 Profil Finnland (Profil Code ALAC)

Modifikation von Anhang A - Sicherungsbasistabelle wie folgt verändert:

Modifizierter Sicherungstyp NV

Nenn	Abschaltzeit [s]				
Strom	35m	0,1	0,2	0,4	5
(A)		Min. unbeeinf	lusster Kurzsch	lussstrom (A)	
2	40,6	27,9	23,4	19,9	11,4
4	82	58	48,5	39,9	23,4
6	128,5	87,5	70,6	58	33,4
10	207,3	144,1	120,6	100,9	58
16	258,6	188,5	157,6	134,3	82,9
20	346	255,3	213,5	181,9	108,4
25	451,6	321,9	269,3	225,3	136,6
35	772,6	566,5	467,5	385,9	211,9
50	1150	800	681,3	580,3	333,6
63	1520	1030	829,1	681,3	398,9
80	1960	1420	1210	1050	559,9
100	2590	1790	1490	1270	731,8
125	3530	2510	2140	1820	956,4
160	4420	3110	2550	2100	1180
200	5690	4360	3710	3160	1690
250	7540	5500	4520	3650	1990
315	9710	7580	6230	5120	2840
400	13220	9910	8290	6810	3460
500	17020	13670	11030	9390	4940
630	24520	17550	14420	11640	6230
710	24640	22210	17930	15000	8030
800	31580	25070	20240	16930	9070
1000	43000	29440	24200	20240	11430
1250	56940	45190	36480	30510	16340

Nenn	Abschaltzeit [s]				
Strom	35m	0,1	0,2	0,4	5
(A)		Min. unbeeinf	lusster Kurzsch	lussstrom (A)	
2	40,6	27,9	23,4	19,9	11,4
4	82	58	48,5	39,9	23,4
6	128,5	87,5	70,6	58	33,4
10	207,3	144,1	120,6	100,9	58
13	241,4	181	147,4	125	70,3
16	258,6	188,5	157,6	134,3	82,9
20	346	255,3	213,5	181,9	108,4
25	451,6	321,9	269,3	225,3	136,6
32	673,9	451,9	384,9	339,6	198,9
35	772,6	566,5	467,5	385,9	211,9
40	867,8	580,3	476,8	398,9	237,6
50	1150	800	681,3	580,3	333,6
63	1520	1030	829,1	681,3	398,9
80	1960	1420	1210	1050	559,9
100	2590	1790	1490	1270	731,8

Modifizierter Sicherungstyp NV

Modifizierter Sicherungstyp NV

Nenn	Abschaltzeit [s]				
Strom	35m	0,1	0,2	0,4	5
(A)		Min. unbeeinf	lusster Kurzsch	lussstrom (A)	
0,5	6,3	6,3	6,3	6,3	4,4
1	12,5	12,5	12,5	12,5	8,8
1,6	20	20	20	20	14
2	25	25	25	25	17,5
4	50	50	50	50	35
6	37,5	37,5	37,5	37,5	37,5
10	62,5	62,5	62,5	62,5	62,5
13	81,3	81,3	81,3	81,3	81,3
15	93,8	93,8	93,8	93,8	93,8
16	100	100	100	100	100
20	125	125	125	125	125
25	156,3	156,3	156,3	156,3	156,3
32	200	200	200	200	200
40	250	250	250	250	250
50	312,5	312,5	312,5	312,5	312,5
63	393,8	393,8	393,8	393,8	393,8

Nenn	Abschaltzeit [s]				
Strom	35m	0,1	0,2	0,4	5
(A)		Min. unbeeinf	usster Kurzsch	lussstrom (A)	
0,5	6,3	6,3	6,3	6,3	4,4
1	12,5	12,5	12,5	12,5	8,8
1,6	20	20	20	20	14
2	25	25	25	25	17,5
4	50	50	50	50	35
6	75	75	75	75	52,5
10	125	125	125	125	87,5
13	162,5	162,5	162,5	162,5	113,8
15	187,5	187,5	187,5	187,5	131,3
16	200	200	200	200	140
20	250	250	250	250	175
25	312,5	312,5	312,5	312,5	218,8
32	400	400	400	400	280
40	500	500	500	500	350
50	625	625	625	625	437,5
63	787,5	787,5	787,5	787,5	551,3

Modifizierter Sicherungstyp C

Modifizierter Sicherungstyp D

Nenn			Abschaltzeit [s]		
Strom	35m	0,1	0,2	0,4	5
(A)		Min. unbeeinf	usster Kurzsch	lussstrom (A)	
0,5	12,5	12,5	12,5	12,5	4,4
1	25	25	25	25	8,8
1,6	40	40	40	40	14
2	50	50	50	50	17,5
4	100	100	100	100	35
6	150	150	150	150	42,5
10	250	250	250	250	87,5
13	325	325	325	325	113,8
15	375	375	375	375	131,3
16	400	400	400	400	140
20	500	500	500	500	175
25	625	625	625	625	218,8
32	800	800	800	800	280

Modifizierter Sicherungstyp K

Nenn			Abschaltzeit [s]		
Strom	35m	0,1	0,2	0,4	
(A)		Min. unbeeinfl	usster Kurzsch	lussstrom (A)	
0,5	9,4	9,4	9,4	9,4	
1	18,8	18,8	18,8	18,8	
1,6	30	30	30	30	
2	37,5	37,5	37,5	37,5	
4	75	75	75	75	
6	112,5	112,5	112,5	112,5	
10	187,5	187,5	187,5	187,5	
13	243,8	243,8	243,8	243,8	
15	281,3	281,3	281,3	281,3	
16	300	300	300	300	
20	375	375	375	375	
25	468,8	468,8	468,8	468,8	
32	600	600	600	600	

B.3 Profil Ungarn (Profil Code ALAD)

Sicherungstyp gR in den Sicherungstabellen hinzugefügt.

Sicherungstyp gR

Nenn	Abschaltzeit [s]				
Strom	35m	0,1	0,2	0,4	5
(A)		Min. unbeeinf	lusster Kurzsch	lussstrom (A)	•
2	31,4	14	10	8	5
4	62,8	28	20	16	10
6	94,2	42	30	24	15
10	157	70	50	40	25
13	204	91	65	52	32,5
16	251	112	80	64	40
20	314	140	100	80	50
25	393	175	125	100	62,5
32	502	224	160	128	80
35	550	245	175	140	87,5
40	628	280	200	160	100
50	785	350	250	200	125
63	989	441	315	252	157,5
80	1256	560	400	320	200
100	1570	700	500	400	250
125	1963	875	625	500	313
160	2510	1120	800	640	400
200	3140	1400	1000	800	500
250	3930	1750	1250	1000	625
315	4950	2210	1575	1260	788
400	6280	2800	2000	1600	1000
500	7850	3500	2500	2000	1250
630	9890	4410	3150	2520	1575
710	11150	4970	3550	2840	1775
800	12560	5600	4000	3200	2000
1000	15700	7000	5000	4000	2500
1250	19630	8750	6250	5000	3130

Ein neue Einzelprüfung Sichtprüfung hinzugefügt

Abbildung 12.1: Menü Sichtprüfung

Prüfparameter / Grenzwerte

Schutzart	Schutzart	[Keine,	automatische	Abschaltung,	Klasse	II,
Schutzant	elektrische Trennung, SELV, PELV]					

Messverfahren

- Wählen Sie die Sichtprüfung Funktion.
- Führen Sie die Sichtprüfung am geprüften Objekt durch.
 - Verwenden Sie <u>verwenden Sie</u> um die PASS- / FAIL- / KEIN STATUS- Anzeige auszuwählen.
- Speichern Sie die Ergebnisse (optional).

Änderungen in Kapitel 7.7 RCD Auto – RCD Auto Test

Hinzugefügte Prüfungen mit dem Multiplikationsfaktor 2.

Modifikation im RCD-Auto-Test Ablauf

R	CD-Auto-Test eingefügte Schritte	Hinweise
•	RCD reaktivieren.	
	Prüfung mit $2 \times I_{\Delta N}$, (+) positive Polarität (Schritt 3).	RCD sollte auslösen
•	RCD reaktivieren.	
	Prüfung mit $2 \times I_{\Delta N}$, (-) negative Polarität (Schritt 4).	RCD sollte auslösen

Abbildung 7.27: Einzelschritte im RCD-Auto-Test – 2 neue Schritte eingefügt

Testergebnisse / Teilergebnisse

t I∆N x1 (+)	Schritt 1 Auslösezeit ($I_{\Delta}=I_{\Delta N}$, (+) positive Polarität)
t I∆N x1, (-)	Schritt 2 Auslösezeit ($I_{\Delta}=I_{\Delta N}$, (-) negative Polarität)
t I∆N x2, (+)	Schritt 3 Auslösezeit ($I_{\Delta}=2 \times I_{\Delta N}$, (+) positive Polarität)
t I∆N x2, (-)	Schritt 4 Auslösezeit ($I_{\Delta}=2 \times I_{\Delta N}$, (-) negative Polarität)
t I∆N x5, (+)	Schritt 5 Auslösezeit (I_{Δ} =5× $I_{\Delta N}$ (+) positive Polarität)
t I∆N x5, (-)	Schritt 6 Auslösezeit (I_{Δ} =5× $I_{\Delta N}$, (-) negative Polarität)
t I∆N x0.5, (+)	Schritt 7 Auslösezeit ($_{\Delta}=\frac{1}{2}\times I_{\Delta N}$, (+) positive Polarität)
t I∆N x0.5, (-)	Schritt 8 Auslösezeit ($I_{\Delta}=1/2 \times I_{\Delta N}$, (-) negative Polarität)
ld (+)	Schritt 9 Auslösezeit ((+) positive Polarität)
ld (-)	Schritt 10 Auslösezeit ((-) negative Polarität)
Uc	Berührungsspannung bei Nenn I _{∆N}

B.4 Profil Schweiz (Profil Code ALAI)

Änderungen in Kapitel 4.4.1 Spannungsmonitor

Im Klemmenspannungsmonitor sind die Positionen der L und N Angaben entgegengesetzt der Standard-Version.

Spannungsmonitor Beispiel:

Die Online-Spannungen werden zusammen mit der Angabe der Prüfanschlüsse angezeigt. Alle drei Prüfklemmen werden für die ausgewählte Messung benutzt.

B.5 Profil UK (Profil Code ALAB)

Änderungen und die UK Sicherungstabellen, siehe separate UK Bedienungsanleitung.

B.6 Profil AUS/NZ (Profil Code ALAE)

Änderungen und die AUS/NZ Sicherungstabellen, siehe separate AUS/NZ Bedienungsanleitung.

Anhang C – **Commander (A 1314, A 1401)**

C.1 **A** Sicherheitsrelevante Warnhinweise:

Messkategorie der Commander-Geräte

Commander-Prüfstecker A 1314 ... 300 V CAT II

Commander-Prüfspitze A 1401 (Kappe ab, 18 mm Spitze))1000 V CAT II / 600 V CAT II / 300 V CAT II (Kappe auf, 4 mm Spitze)1000 V CAT II / 600 V CAT III / 300 V CAT IV

- Die Messkategorie der Commander-Geräte kann niedriger sein als die Schutzkategorie des Geräts.
- Wenn am gepr
 üften PE-Anschluss eine gef
 ährliche Spannung festgestellt wird, beenden Sie sofort alle Messungen und suchen und beseitigen Sie den Fehler!
- Beim Austausch der Batteriezellen oder vor dem Öffnen der Batteriefachabdeckung trennen Sie jegliches Messzubehör vom Gerät und der Anlage ab.
- Service, Reparaturen oder die Einstellung der Geräte und des Zubehörs dürfen nur von kompetentem Fachpersonal durchgeführt werden!

C.2 Batterie

Im Messgerät werden zwei Alkali- oder wieder aufladbare NiMH-Akkus der Größe AAA verwendet.

Die Betriebsdauer von mindestens 40 h wird für Zellen mit einer Nennladung von 850 mAh angegeben.

Hinweise:

- Entfernen Sie alle Batterien aus dem Batteriefach, wenn das Instrument über einen längeren Zeitraum nicht benutzt wird.
- Es können Alkali- oder wieder aufladbare NiMH-Akkus der Größe AAA verwendet werden. Metrel empfiehlt nur den Einsatz von wieder aufladbaren Batterien von 800 mAh oder mehr.
- Stellen Sie sicher, dass die Akkus richtig eingesetzt sind, sonst funktioniert das Commander-Gerät nicht, und die Akkus könnten entladen werden.

C.3 Beschreibung der Commander-Geräte

Abbildung .3: Vorderseite der Commander-Prüfspitze (A 1401)

Abbildung .4: Vorderseite des Commander-Prüfstecker (A 1314)

Abbildung .5: Rückseite

1	TEST	TEST Startet die Messungen.
		Dient auch als Schutzleiter-Berührungselektrode.
2	LED	Linke Status-LED (RGB)
3	LED	Rechte Status-LED (RGB)
4	LEDs	Lampen-LEDs (Commander-Prüfspitze)
5	Funktionswahlschalter	Wählt die Prüffunktion aus.
6	MEM	Speichern/Abrufen/Löschen von Prüfungen im
		Gerätespeicher.
7	НВ	Schaltet die Hintergrundbeleuchtung am Gerät Ein/Aus
8	Lampen-Taste	Schaltet die Lampe Ein/Aus (Commander-Prüfspitze)
9	Batteriezellen	Größe AAA, Alkaline/ wieder aufladbar Ni-MH
10	Batterieabdeckung	Abdeckung des Batteriefachs
11	Карре	Abnehmbare CAT IV-Kappe (Commander-Prüfspitze)

C.4 Betrieb der Commander-Geräte

Beide LEDs gelb	Warnung! Gefährliche Spannung am PE-Anschluss des
	Commander-Geräts! Gefährliche Spannung am PE-
	Anschluss!
Rechte LED rot	NICHT BESTANDEN Anzeige
Rechte LED grün	BESTANDEN Anzeige
Linke LED blinkt blau	Das Commander-Gerät überwacht die

	Eingangsspannung
Linke LED orange	Spannung zwischen den Prüfanschlüssen ist höher als
·	50 V
Beide LEDs blinken rot	Geringer Ladestand.
Beide LEDs rot - anschließendes	Batteriespannung ist für den Betrieb des Commander-
Ausschalten	Geräts zu niedrig

Anhang D – Strukturobjekte

Die verwendeten Strukturelemente im Memory Organizer sind vom Geräteprofil abhängig.

Symbol	Standardname	Beschreibung
2	Knoten	Knoten
	Objekt	Objekt
	Verteiler	Verteiler
	Untervert.	Unterverteiler
→•	Örtl. Pot. Ausgl.	Örtlicher Potentialausgleich
W	Wasserversorgung	Schutzleiter Wasserversorgung
0	Ölversorgung	Schutzleiter Ölversorgung
L	Blitzschutzanlage	Schutzleiter für das Blitzschutzanlage
G	Gasversorgung	Schutzleiter Gasversorgung
S	Stahlbau	Schutzleiter für den Stahlbau
	weitere Versorgungsanschlüsse	Schutzleiter weiterer Versorgungsanschlüsse
С	Erdleiter	Erdleiter
	Schaltung	Schaltung
→•	Örtl. Pot. Ausgl.	Örtlicher Potentialausgleich
Œ	Verbindung	Verbindung
\odot	Anschlussbuchse	Anschlussbuchse
(F	Dreiphasenverbindung	Dreiphasenverbindung
	Beleuchtung	Beleuchtung
	Dreiphasensteckdose	Dreiphasensteckdose
ΦΦ	RCD	RCD
=	MPE	MPE
÷	Fundament Er.	Fundamenterder
5	Podential. Ausgl. Sch.	Potentialausgleichsschiene
e	Hauswasserz.	Schutzleiter für Hauswasserzähler
	Hauptwasserl.	Schutzleiter für die Hauptwasserleitungen
Ē	Hauptschutzl.	Hauptschutzleiter
*	Gasanl.	Schutzleiter für Innengasanlage
	Heizungsanl.	Schutzleiter für die Heizungsanlage
*	Klimaanl.	Schutzleiter für Klimaanlage

!	Aufzug	Schutzleiter für die Aufzuganlage
@	Schutzl. Aufzugst.	Schutzleiter Aufzugsteuerung
	Telefon Aufzugst.	Schutzleiter für die Telefonanlage
\mathfrak{D}	Blitzschutz Anl.	Schutzleiter für das Blitzschutzanlage
(_)	Antennen Anl.	Schutzleiter für das Antennenanlage
	Gebäude -	Haus-Schutzleiter
≻ 8	Weitere Anschl.	Weitere Anschlüsse
1	Erder	Erder
4	Blitzschutzanl.	Blitzschutzanlage
Ń	Blitzabl.	Blitzableiter
Χ.	Wechselr.	Wechselrichter
HIP IS	String	String Array
	Panel	Panel